算法的特性和空间复杂度---数据结构

简介: 算法的特性和空间复杂度---数据结构

前言:


 在前面我们已经讲过时间复杂度了,空间复杂度也几乎是八九不离十,我们这节主要来讲讲一个好的算法需要满足什么样的特点。


1.算法


 算法实际上就是一组一组的操作,在计算机上表现为一组指令,让计算机按照我们想要的逻辑进行运算,并能有效的解决实际问题。


1.1算法的特性

 算法具有五个特性,输入和输出、有限性和可行性以及确定性。


 输入和输出是提供数据和返回结果的代名词,一个算法可以没有输入,也可以有多个输入,取决于具体需求。但输出是必须有的,如果一个算法没有将其计算的结果返给我们使用,那还要这个算法干嘛呢?

有限性指的是实现解决问题算法的指令是有限的,执行完后自动会结束程序,并且条指令,每个步骤所用的时长都在可以接收的时间内。

                                                       有限性指两方面

指令的数量是有限的

指令执行时间可接受

可行性是指在实现算法的整个过程中,每一个步骤的是合理、可以实现的、也就是不会出错,可以得到正确的结果。

确定性,算法的每一个步骤只能有一种结果,不管在什么样的环境下、在什么编译器上,运行算出来的结果是唯一的。

1.2设计算法

 1.设计算法,需要我们能够正确的表达逻辑,以解决实际问题,这个要求我们对算法的设计要有正确性。


 算法的正确性:指算法具有完整的结构,包括输入、输出、和加工处理数据的过程中是唯一性的,最终能够得到正确的答案。


 算法正确的四大层次:


算法程序没有语法上的错误(没有语法错误时最基础的)

算法对于合理数据的输入能够得出正确的结果

算法能对不恰当的数据输入返回令人满意的信息反馈(而不是输入不合理的数据后就跑出一些随意的值)

算法对精心挑选的具有钻牛角尖性质的数据仍能处理得出满足要求的输入结果。

 对于这四种境界,层次1是最低端的,层次4在一般情况下是很难达到的,我们退而求其次,第3层是能满足大部分要求并且被我们当成是算法是否正确的标准。


 算法的可读性:算法设计,不是为了让人读不懂,而是为了具有可读性,便于交流,以及后期的维护。


 一个算法,如果只能给敲这段代码的人和计算机理解,那么从技术角度上来看,可能这个人是大神,别人看不懂,要不就是敲的令人看不懂。一般没注释的代码,都需要花费别人很多时间去理解。我们不追求花里胡哨,简单易懂,质量高的代码才是我们追求的!


 算法的健壮性:当输入的数据不合理的时候,会有特殊的情况处理,要么是给程序员提示出错,要么抛出异常报错。而不是编写的代码隐晦性的存在错误,但不是致命的,单独跑没问题,当在工程里将代码合在一起的时候,跑起来程序就挂了,这时要找错误那简直是程序员噩梦。


 算法的时间效率高、存储量低:算法的时间复杂度要尽可能的小,时间效率要追求高。存储量低,不希望算法在执行的时候对内存空间的开销太多。


 算法的特性和算法的设计怎么记?我们这样记:算法设计里有个正确性,这个正确性要求算法是一个完整的算法。那么就要有输入输出,结果要想正确,计算过程肯定是唯一的,我们怎么得出结果是正确的呢?那是因为算法具有有限性(计算机在短时间内跑的出结果让我们看到是正确的)和可行性(在计算机中可以实现)。


 博主相信读者多看几遍,算法的特性就记下来了~,而算法设计的要求其实比较容易理解滴。


2.空间复杂度


 前面我们讲过算法的时间复杂度,这里我们补充一下算法的空间复杂度。


 链接:时间复杂度


 在以前,计算机的内存是很小的,内存很珍贵,当时考虑的更多是空间复杂度,现在存储空间是足够了的,我们追求的是时间上的效率, 当然空间开销小也是需要的,毕竟在大数据时代,即使内存变多了,也不是让我们来浪费的理由。


 空间复杂度:并不是算占用的字节数,而是算创建变量的个数。

void BubbleSort(int* a, int n)//冒泡排序
{
    assert(a);
    for(size_t end = n; end > 0; end--)
    {
        int exchange = 0;
        for(size_t i = 1; i < end; i++)
        {
            if(a[i-1]>a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
    }
    if(exchange == 0)
        break;
}


 这里我们看看创建了多少个变量,形参部分有整型指针a、整型变量n,还有size_t类型end变量、size_t类型i变量、整型变量exchange变量总共五个。是常数,所以空间复杂度是O(1)。


 空间复杂度和时间复杂度的都是同样用大O渐进表示法。


 exchange在进入循环时创建,出了循环时被销毁。在这个重复的过程中,是不是应该像计算时间复杂度那样按次数来算空间中变量的创建次数吗?不是的,次数在时间上有累计,在空间上不累计。


 空间复杂度是在创建最多额外变量时候,变量的个数才是空间复杂度的数,也就是要在变量最多的时候,计算这个时候占的空间多少。

long long* Fib(size_t n)
{
    if(n == 0)
        return NULL;
    long long* fibarray = (long long*)malloc((n+1) * sizeof(long long));
    fibarray[0] = 0;
    fibarray[1] = 1;
    for(int i = 2; i <= n; i++)
    {
        fibarray[i] = fibarray[i-1] + fibarray[i-2];
    }
    return fibarray;
}

 计算斐波那契数列的空间复杂度:size_t n 是一个变量,malloc开辟了n+1个元素的数组大小,    int i也是一个变量,这里面总共的变量数是N+3。大O表示法,对空间复杂度贡献值最大的是N,所以空间复杂度是O(N)。


 一般情况下,我们都是开辟常数个变量或是开辟N个元素的数组,对应的空间复杂度是O(1)和O(N)。


 用递归求阶乘的空间复杂度:



 在算阶乘的时候,我们求N的阶乘,就需要调用N次函数,每次函数都会创建常量个变量,最终空间复杂度为O(N)。


 注意:所有的空间在程序结束后归还操作系统;在往下递归的时候,前面的函数还没结束,信息仍保留着,只有在回归,回溯的时候才一个一个销毁。


3.学习复杂度的意义


 不管是时间复杂度也好,空间复杂度也罢。我们为什么要学这些东西,我只要能写出代码,能跑起出正确结果就OK了,学这个干嘛?如果你在问这个,只能说你对还没在玩"计算机"。


首先,我们在刷题的时候,经常会有时间复杂度的限制、空间复杂度的限制。学完后我们就懂题目应该怎么做

其次,学完这些复杂度能够促进我们思考更好的算法,解决现有的效率低,占用存储量大的算法,在这探索的过程中开拓新思维,相当于在玩的感觉。

 OK,学到这里,我们对数据结构里的基础知识都掌握了,接下来的数据结构知识主要是写代码题了,跟博主一起学吧!


结语:希望读者读完能有所收获!对数据结构有进一步的认识!✔


 读者对本文不理解的地方,或是发现文章内容上有误等,请在下方评论留言告诉博主哟~,也可以对博主提出一些文章改进的建议,感激不尽!最后的最后!


 ❤求点赞,求关注,你的点赞是我更新的动力,一起进步吧。

相关文章
|
29天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
46 1
|
1月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
104 4
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
96 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
59 3
|
6天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
46 20
|
1月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
1月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
106 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
62 20
|
29天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
62 1