【数据结构】树的介绍

简介: 【数据结构】树的介绍

前言


🚩本章给大家介绍一下树。树的难度相对于前面的数据结构来说,又高了一个台阶,所以我们要先从最基础的开始,也就是本章的一些知识点。

🚩树又分为很多种树,如 二叉树,红黑树,AVL树,B树 等等,这些的难度都相对较大,所以大家对本章树的一些概念以及一些基本性质的理解必不可少。

🚩本章除了对树的介绍,还有基础的二叉树的相关介绍,目的是为了大家能够更好的理解树。


树的概念及结构


树的概念


  • 树是一种非线性的数据结构,它是由n(n >= 0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。


有一个特殊的结点,称为根结点,根节点没有前驱结点。

除根节点外,其余结点被分成M(M > 0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1 <= i <= m) 又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继。因此,树是递归定义的。


05e7e515e806415aadf9d8a3ce534205.png

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

例如:


c7f26eb64b7c4e53a04ce73d7e0b6a40.png



  • 根据树的结构,有以下概念:



8a5c18322a0d43ff9422a3fbab12de29.png


1. 节点的度: 一个节点含有的子树的个数称为该节点的度; 如上图:A的为6。

2. 叶节点或终端节点: 度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点。

3. 非终端节点或分支节点: 度不为0的节点; 如上图:D、E、F、G...等节点为分支节点。

4. 双亲节点或父节点: 若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点。

5. 孩子节点或子节点: 一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点。

6. 兄弟节点: 具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点。

7. 树的度: 一棵树中,最大的节点的度称为树的度; 如上图:树的度为6。

8. 节点的层次: 从根开始定义起,根为第1层,根的子节点为第2层,以此类推。

9. 树的高度或深度: 树中节点的最大层次; 如上图:树的高度为4。

10. 堂兄弟节点: 双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点。

11. 节点的祖先: 从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先。

12. 子孙: 以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙。

13. 森林: 由m(m>0)棵互不相交的树的集合称为森林。


树的表示


树的结构相对线性表就比较复杂了,要存储表示起来也就比较麻烦了,既要保存值域,也要保存结点和结点之间的关系。实际中树有很多种表示方式如: 双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法 等。我们这里就简单的了解其中最常用的 孩子兄弟表示法


所谓孩子兄弟表示法,指的是将整棵树用二叉链表存储起来,具体实现方案是:树的左指针指向自己的第一个孩子,右指针指向与自己相邻的兄弟。

该结构的最大优点是:它和二叉树的二叉链表表示完全一样。可利用二叉树的算法来实现对树的操作

图示:

fdace537c7b744febacd042c83f8b768.png


dfb65d19fb0147328da03a63d581ee18.png

其定义的结构如下:

typedef int DataType;
struct Node
{
   struct Node* _firstChild1; // 第一个孩子结点
   struct Node* _pNextBrother; // 指向其下一个兄弟结点
   DataType _data; // 结点中的数据域
};


树在实际中的运用


  • 树在实际中运用的最好的一个例子,就是系统的文件目录结构。

Linux树状目录结构:


1817330d3473497e901a0b3811c2e2df.png


  • 实际上windows的目录结构也是一棵树,我们点击一个文件就会出现若干子文件等等,点击子文件又会出现若干个子文件的子文件等等,这也是一个明显的数的储存结构。

二叉树的概念及结构


二叉树的概念

  • 一棵二叉树是结点的一个有限集合,该集合:要么为空,要么由一个根节点加上两棵别称为左子树和右子树的二叉树组成。


02850884fa2f4b6ebedecbfd77a848bc.png


从上图可以看出:

  1. 二叉树不存在度大于2的结点;
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的:



bfaa4020f6804e3daffb1fe47a7ceaec.png



现实中的二叉树


d28bf286c799440a94fc330635ee4a66.png



79fb023a82114425bce6ed84445b067b.png

  • 要是能在现实种中看到这种树,那不得好好拜一拜 😃


特殊的二叉树


满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2 ^ K - 1,则它就是满二叉树。

完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K

的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。


d1da188e6ec04cfa8356d6afdbe3fd49.png


二叉树的性质


若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2 ^ (i - 1)个结点。

若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2 ^ h - 1。

对任何一棵二叉树, 如果度为0的叶结点个数为 a, 度为2的分支结点个数为 b,则有 a = b + 1。

若规定根节点的层数为1,具有n个结点的满二叉树的深度 h= log(n + 1)。

对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对

于序号为i的结点有:

若i > 0,i位置节点的双亲序号:(i - 1) / 2;i = 0,i 为根节点编号,无双亲节点;

若2i + 1 < n,左孩子序号:2i + 1,2i + 1 >= n否则无左孩子;

若2i + 2 < n,右孩子序号:2i + 2,2i + 2 >= n否则无右孩子。


二叉树的储存结构


二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。


顺序存储


  • 顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。


ddd641f65c174c75b27dd1b2c8ef9a11.png


链式存储


二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面的高阶数据结构如红黑树等会用到三叉链。

49f56683f6fc4185b79489cdc4affb8a.png



958eb4e438d344d0b5a5760f6c9d5a05.png


typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
   struct BinTreeNode* _pLeft; // 指向当前节点左孩子
   struct BinTreeNode* _pRight; // 指向当前节点右孩子
   BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
   struct BinTreeNode* _pParent; // 指向当前节点的双亲
   struct BinTreeNode* _pLeft; // 指向当前节点左孩子
   struct BinTreeNode* _pRight; // 指向当前节点右孩子
   BTDataType _data; // 当前节点值域
};

写在最后


💝关于树的介绍就这么多,想深入了解大家可以查阅一些文献。后续我将会以此篇章为基础点,依次给大家带来堆与二叉树的实现。

❤️‍🔥后续将会持续输出有关数据结构与算法的文章,你们的支持就是我写作的最大动力!


感谢阅读本小白的博客,错误的地方请严厉指出噢~

相关文章
|
3月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
102 1
|
1月前
|
存储 算法 搜索推荐
探索常见数据结构:数组、链表、栈、队列、树和图
探索常见数据结构:数组、链表、栈、队列、树和图
99 64
|
14天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
57 16
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
19 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
1月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(三)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
1月前
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(二)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
1月前
|
存储
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解(一)
【高阶数据结构】二叉树进阶探秘:AVL树的平衡机制与实现详解
|
1月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
28 0
|
2月前
|
JSON 前端开发 JavaScript
一文了解树在前端中的应用,掌握数据结构中树的生命线
该文章详细介绍了树这一数据结构在前端开发中的应用,包括树的基本概念、遍历方法(如深度优先遍历、广度优先遍历)以及二叉树的先序、中序、后序遍历,并通过实例代码展示了如何在JavaScript中实现这些遍历算法。此外,文章还探讨了树结构在处理JSON数据时的应用场景。
一文了解树在前端中的应用,掌握数据结构中树的生命线

热门文章

最新文章