【数据结构】链队列的C语言实现

简介: 【数据结构】链队列的C语言实现

队列

1.队列的概念

队列 和栈一样,是一个 特殊的线性表

队列只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表。进行 插入操作 的一端称为 队尾,进行 删除操作 的一端称为队头

队列中的元素遵守 先进先出(First In First Out) 的原则。就和排队一样,队列是绝对公平的,先来的先到队头,不存在插队行为,只能后面排队,前面离开。

d434d995a1314f2ba21eea504cec72ff.png

2.队列的结构

队列的结构可以用 数组链表 来实现。哪个结构更好?

数组:

数组左边为队头右边为队尾:队尾(右)插入数据 为 顺序表尾插 很方便,但是 队头(左)删除数据 需要挪动数据,很麻烦。

数组左边为队尾右边为队头:队头(右)删除数据 为尾删,队尾(左)插入数据 需要挪动数据,也很麻烦。

所以 数组结构 并不适合队列。


链表:

结构选择:单/双 循环/非循环 带头/不带头

带不带头?可要可不要,带头就是方便尾插,少一层判断,没什么影响。

双向吗?没必要找前一个元素,队列只需要队头队尾出入数据。

循环吗?价值不大。双向循环可以找尾,但是没有必要。


双向链表:

可以使用双向链表,但是没必要,小题大做了,使用单链表就可以。

3.队列的实现

3.1结构设计

上面确定了用 单链表实现,所以就一定要有结构体表示 节点

typedef struct QueueNode
{
  QDataType data;
  struct QueueNode* next;
}QNode;

由于链表的尾插比较麻烦,而队列的入数据为尾插。所以定义队列的结构体时,可以定义两个指针 headtail 分别对应 队头队尾 ,tail 的引入就是方便尾插,再在给定一个 sz 实时记录队列的 大小

typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int sz;
}Queue;

大小

typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int sz;
}Queue;

3.2接口总览

void QueueInit(Queue* pq); // 初始化
void QueueDestroy(Queue* pq); // 销毁
void QueuePush(Queue* pq, QDataType x); // 入队列
void QueuePop(Queue* pq); // 出队列
QDataType QueueFront(Queue* pq); // 取队头元素
QDataType QueueBack(Queue* pq); // 取队尾元素
bool QueueEmpty(Queue* pq); // 判空
int QueueSize(Queue* pq); // 计算队列大小

3.3初始化

队列初始化,就只需要结构中指针初始化为 NULL,并将 sz 初始化为0。

void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
  pq->sz = 0;
}

这里是通过结构体的地址来找到结构体中的两个指针,通过结构体来改变指针的。

3.4销毁

我们实现的队列结构为 链式 的,所以本质为一条 单链表

那么销毁时,就需要迭代销毁链表的节点。

void QueueDestroy(Queue* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
  pq->sz = 0;
}

3.5入队列

对于单链表的尾插,需要创建节点,找尾,然后链接。


但是我们设计队列结构时,给定了一个 tail 作为队尾,这时插入就比较方便了。但是需要注意一下 第一次尾插 的情况。


在 入队列 之后,记得调整 sz。


而且队列只会从队尾入数据,所以创建节点的一步,并没有必要封装一个接口专门调用,直接在函数中创建即可。

void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
  else
  {
    newnode->data = x;
    newnode->next = NULL;
    //不置空newnode->next是随机值,会出问题
  }
  // 尾插
  if (pq->head == NULL)
  {
    assert(pq->tail == NULL);
    //头为空,尾却没为空,警告
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = pq->tail->next;
  }
  pq->sz++; 
}

3.6 出队列

首先明确,队列为空不能出队列,出队列是从 队头 出数据。

其次,需要考虑删除时会不会有什么特殊情况。

一般删除时,可以记录 head 的下一个节点,然后释放 head ,再重新为 head 赋值。


但是,当 只有一个节点 呢?此刻 head == tail,它们的地址相同,如果此时仅仅释放了 head,最后head走到 NULL,但是tail 此刻指向被释放的节点,且没有置空,此刻风险就产生了,tail就变成野指针了。

1c35d2946ff1483dad45efe972dc96fd.png之后一旦我 入队列 时,tail != NULL,那么必定就会走到 else 部分,对 tail 进行访问,此刻程序就会奔溃,所以需要处理一下,将 tail 也置空

同样的,出队列 成功后 sz 需要发生调整。

void QueuePop(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  // 一个节点时删除的特殊情况
  // 需要将头尾都变为空
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* newhead = pq->head->next;
    free(pq->head);
    pq->head = newhead;
  }
  pq->sz--;
}

3.7取对头数据

队列非空,取 head 出数据

QDataType QueueFront(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->head->data;
}

3.8 取队尾数据

队列非空,取 tail 处数据。

QDataType QueueBack(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->tail->data;
}

3.9 判空

当 head 和 tail 都为空指针时,说明队列中无元素。

bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->head == NULL && pq->tail == NULL;
}

3.10 计算队列大小

从这个接口处,就可以看出设计结构时,设计的还是很精妙的,因为有 sz 直接返回即可。

int QueueSize(Queue* pq)
{
  assert(pq);
  return pq->sz;
}

试想一下,如果没有这个 sz,我们如何计算队列大小?是不是又得遍历链表了?这样接口的时间复杂度就为O(N),而其他接口几乎都是O(1)的复杂度,是不是不太理想?所以结构设计时加上一个 sz 的效果是极好的!

下面贴上没有 sz 时的代码:

int QueueSize(Queue* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  int size = 0;
  while (cur)
  {
    cur = cur->next;
    ++size;
  }
  return size;
}

4. 完整代码

Queue.h

#pragma once
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
typedef int QDataType;
typedef struct QueueNode
{
  QDataType data;
  struct QueueNode* next;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int sz;
}Queue;
void QueueInit(Queue* pq); // 初始化
void QueueDestroy(Queue* pq); // 销毁
void QueuePush(Queue* pq, QDataType x); // 入队列
void QueuePop(Queue* pq); // 出队列
QDataType QueueFront(Queue* pq); // 取队头元素
QDataType QueueBack(Queue* pq); // 取队尾元素
bool QueueEmpty(Queue* pq); // 判空
int QueueSize(Queue* pq); // 计算队列大小

Queue.c

#include "Queue.h"
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
  pq->sz = 0;
}
void QueueDestroy(Queue* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
    QNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
  pq->sz = 0;
}
void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
  else
  {
    newnode->data = x;
    newnode->next = NULL;
    //不置空newnode->next是随机值,会出问题
  }
  // 尾插
  if (pq->head == NULL)
  {
    assert(pq->tail == NULL);
    //头为空,尾却没为空,警告
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = pq->tail->next;
  }
  pq->sz++;
}
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  // 一个节点时删除的特殊情况
  // 需要将头尾都变为空
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QNode* newhead = pq->head->next;
    free(pq->head);
    pq->head = newhead;
  }
  pq->sz--;
}
QDataType QueueFront(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));//防止空指针
  return pq->head->data;
}
QDataType QueueBack(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->tail->data;
}
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  //return pq->size==0;
  return pq->head == NULL && pq->tail == NULL;
}
int QueueSize(Queue* pq)
{
  assert(pq);
  return pq->sz;
}

test.c

#include "Queue.h"
int main()
{
  Queue q;
  QueueInit(&q);
  QueuePush(&q,1);
  QueuePush(&q,2);
  QueuePush(&q,3);
  QueuePush(&q,4);
  while (!QueueEmpty(&q))
  {
    printf("%d ", QueueFront(&q));
    QueuePop(&q);
  }
  printf("\n");
  QueueDestroy(&q);
  system("pause");
  return 0;
}

7.总结:

今天我们认识并学习了队列的相关概念、结构与接口实现,并且针对每个常用的功能接口进行了实现。总体来说,链队列的结构相比于之前的数据结构是比较简单的,之后将介绍和讲解栈与队列的相关OJ题。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

c3ad96b16d2e46119dd2b9357f295e3f.jpg

相关文章
|
2月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
66 1
|
22天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
22天前
|
C语言
数据结构基础详解(C语言):图的基本概念_无向图_有向图_子图_生成树_生成森林_完全图
本文介绍了图的基本概念,包括图的定义、无向图与有向图、简单图与多重图等,并解释了顶点度、路径、连通性等相关术语。此外还讨论了子图、生成树、带权图及几种特殊形态的图,如完全图和树等。通过这些概念,读者可以更好地理解图论的基础知识。
|
24天前
|
存储 算法 C语言
数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解
本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。
|
24天前
|
存储 算法 C语言
数据结构基础详解(C语言):单链表_定义_初始化_插入_删除_查找_建立操作_纯c语言代码注释讲解
本文详细介绍了单链表的理论知识,涵盖单链表的定义、优点与缺点,并通过示例代码讲解了单链表的初始化、插入、删除、查找等核心操作。文中还具体分析了按位序插入、指定节点前后插入、按位序删除及按值查找等算法实现,并提供了尾插法和头插法建立单链表的方法,帮助读者深入理解单链表的基本原理与应用技巧。
|
24天前
|
存储 C语言 C++
数据结构基础详解(C语言) 顺序表:顺序表静态分配和动态分配增删改查基本操作的基本介绍及c语言代码实现
本文介绍了顺序表的定义及其在C/C++中的实现方法。顺序表通过连续存储空间实现线性表,使逻辑上相邻的元素在物理位置上也相邻。文章详细描述了静态分配与动态分配两种方式下的顺序表定义、初始化、插入、删除、查找等基本操作,并提供了具体代码示例。静态分配方式下顺序表的长度固定,而动态分配则可根据需求调整大小。此外,还总结了顺序表的优点,如随机访问效率高、存储密度大,以及缺点,如扩展不便和插入删除操作成本高等特点。
|
24天前
|
存储 机器学习/深度学习 C语言
数据结构基础详解(C语言): 树与二叉树的基本类型与存储结构详解
本文介绍了树和二叉树的基本概念及性质。树是由节点组成的层次结构,其中节点的度为其分支数量,树的度为树中最大节点度数。二叉树是一种特殊的树,其节点最多有两个子节点,具有多种性质,如叶子节点数与度为2的节点数之间的关系。此外,还介绍了二叉树的不同形态,包括满二叉树、完全二叉树、二叉排序树和平衡二叉树,并探讨了二叉树的顺序存储和链式存储结构。
|
24天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
147 3
|
24天前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
24天前
|
存储 算法 C语言
C语言手撕数据结构代码_顺序表_静态存储_动态存储
本文介绍了基于静态和动态存储的顺序表操作实现,涵盖创建、删除、插入、合并、求交集与差集、逆置及循环移动等常见操作。通过详细的C语言代码示例,展示了如何高效地处理顺序表数据结构的各种问题。