PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记

简介: PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记

一:摘要

20.png

二:介绍

21.png

三:问题陈述

22.png


四:方法

23.png

24.png


25.png

26.png


五:实验

27.png

六:结论

28.png


目录
相关文章
|
2月前
|
机器学习/深度学习 算法
|
8月前
|
算法 计算机视觉
2017cvpr论文解读——Nasal Patches and Curves for Expression-Robust 3D Face Recognition
2017cvpr论文解读——Nasal Patches and Curves for Expression-Robust 3D Face Recognition
52 1
|
机器学习/深度学习 数据挖掘
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
63 1
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
|
机器学习/深度学习 自然语言处理 算法
SS-AGA:Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment 论文解读
预测知识图(KG)中缺失的事实是至关重要的,因为现代知识图远未补全。由于劳动密集型的人类标签,当处理以各种语言表示的知识时,这种现象会恶化。
115 0
|
数据可视化 数据挖掘
【论文解读】Dual Contrastive Learning:Text Classification via Label-Aware Data Augmentation
北航出了一篇比较有意思的文章,使用标签感知的数据增强方式,将对比学习放置在有监督的环境中 ,下游任务为多类文本分类,在低资源环境中进行实验取得了不错的效果
476 0
|
数据挖掘
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记
138 0
带你读《2022技术人的百宝黑皮书》——A Contrastive Framework for Learning Sentence Representations from Pairwise and Triple- wise Perspective in Angular Space(12)
带你读《2022技术人的百宝黑皮书》——A Contrastive Framework for Learning Sentence Representations from Pairwise and Triple- wise Perspective in Angular Space(12)
|
机器学习/深度学习 算法 数据挖掘
A Generative Adversarial Network-based Deep Learning Method for Low-quality Defect ImageReconstructi
本文提出了一种基于生成对抗网络 (GAN) 的 DL 方法,用于低质量缺陷图像识别。 GAN用于重建低质量缺陷图像,并建立VGG16网络识别重建图像。
162 0
|
机器学习/深度学习 算法 搜索推荐
On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing 论文阅读笔记
On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing 论文阅读笔记
218 0
On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing 论文阅读笔记
|
机器学习/深度学习 边缘计算 人工智能
Re0:读论文 PPNP/APPNP Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Re0:读论文 PPNP/APPNP Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Re0:读论文 PPNP/APPNP Predict then Propagate: Graph Neural Networks meet Personalized PageRank