Spark实现WordCount的11种方式,你知道的有哪些?

简介: Spark11种方式实现wordcount

前言

学习任何一门语言,都是从helloword开始,对于大数据框架来说,则是从wordcount开始,Spark也不例外,作为一门大数据处理框架,在系统的学习spark之后,wordcount可以有11种方式实现,你知道的有哪些呢?还等啥,不知道的来了解一下吧!

11种方式实现wordcount

方式1:groupBy

def wordcount(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val mapRDD = rdd.flatMap(_.split(" "))
    val mRDD = mapRDD.map((_, 1))
    val group = mRDD.groupBy(t => t._1)
    val wordcount = group.mapValues(
        iter => iter.size
    )
}

方式2:groupByKey

def wordcount2(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val mapRDD = rdd.flatMap(_.split(" "))
    val mRDD = mapRDD.map((_, 1))
    val group = mRDD.groupByKey()
    val wordcount = group.mapValues(
        iter => iter.size
    )
}

方式3:reduceByKey

def wordcount3(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val mapRDD = rdd.flatMap(_.split(" "))
    val mRDD = mapRDD.map((_, 1))
    val wordcount = mRDD.reduceByKey(_+_)
}

方式4:aggregateByKey

def wordcount4(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val mapRDD = rdd.flatMap(_.split(" "))
    val mRDD = mapRDD.map((_, 1))
    val wordcount = mRDD.aggregateByKey(0)(_+_,_+_)
}

方式5:foldByKey

def wordcount5(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val mapRDD = rdd.flatMap(_.split(" "))
    val mRDD = mapRDD.map((_, 1))
    val wordcount = mRDD.foldByKey(0)(_+_)
}

方式6:combineByKey

def wordcount6(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val mapRDD = rdd.flatMap(_.split(" "))
    val mRDD = mapRDD.map((_, 1))
    val wordcount = mRDD.combineByKey(
        v => v,
        (x:Int, y) => x + y,
        (x:Int, y:Int) => x + y
    )
}

方式7:countByKey

def wordcount7(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val mapRDD = rdd.flatMap(_.split(" "))
    val mRDD = mapRDD.map((_, 1))
    val wordcount = mRDD.countByKey()
}

方式8:countByValue

def wordcount8(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val mapRDD = rdd.flatMap(_.split(" "))
    val wordcount = mapRDD.countByValue()
}

方式9:reduce

def wordcount9(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val words = rdd.flatMap(_.split(" "))
    // word => Map[(word,1)]
    val mapRDD = words.map(
        word => {
            // mutable 操作起来比较方便
            mutable.Map[String, Long]((word, 1))
        }
    )
    // Map 和 Map 聚合
    val wordcount = mapRDD.reduce(
        (map1, map2) => {
            map2.foreach {
                case (word, count) => {
                    val newCount = map1.getOrElse(word, 0L) + count
                    map1.update(word, newCount)
                }
            }
            map1
        }
    )
    println(wordcount)
}

方式10:aggregate

def wordcount10(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val words = rdd.flatMap(_.split(" "))
    // word => Map[(word,1)]
    val mapRDD = words.map(
        word => {
            // mutable 操作起来比较方便
            mutable.Map[String, Long]((word, 1))
        }
    )
    // Map 和 Map 聚合
    val wordcount = mapRDD.aggregate(mutable.Map[String, Long]((mapRDD.first().keySet.head,0)))(
        (map1, map2) => {
            map2.foreach {
                case (word, count) => {
                    val newCount = map1.getOrElse(word, 0L) + count
                    map1.update(word, newCount)
                }
            }
            map1
        }, (map1, map2) => {
            map2.foreach {
                case (word, count) => {
                    val newCount = map1.getOrElse(word, 0L) + count
                    map1.update(word, newCount)
                }
            }
            map1
        }
    )
    println(wordcount)
}

方式11:fold

def wordcount11(sc: SparkContext): Unit ={
    val rdd = sc.makeRDD(List("Hello Scala", "Hello Spark"))
    val words = rdd.flatMap(_.split(" "))
    // word => Map[(word,1)]
    val mapRDD = words.map(
      word => {
        // mutable 操作起来比较方便
        mutable.Map[String, Long]((word, 1))
      }
    )
    // Map 和 Map 聚合
    val wordcount = mapRDD.fold(mutable.Map[String, Long]((mapRDD.first().keySet.head,0)))(
      (map1, map2) => {
        map2.foreach {
          case (word, count) => {
            val newCount = map1.getOrElse(word, 0L) + count
            map1.update(word, newCount)
          }
        }
        map1
      }
    )
    println(wordcount)
}

结语

以上就是十一种求WordCount的实现方式了!好了,今天就为大家分享到这里了,如果本文对你有帮助的话,欢迎点赞&收藏&分享,这对我继续分享&创作优质文章非常重要。感谢🙏🏻

相关文章
|
分布式计算 Java Scala
181 Spark IDEA中编写WordCount程序
181 Spark IDEA中编写WordCount程序
72 0
|
3月前
|
分布式计算 大数据 Java
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
52 1
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
|
7月前
|
分布式计算 资源调度 Java
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
85 0
|
7月前
|
分布式计算 Hadoop Scala
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
64 0
|
8月前
|
存储 分布式计算 Apache
Spark编程范例:Word Count示例解析
Spark编程范例:Word Count示例解析
|
8月前
|
SQL 分布式计算 Java
Spark 基础教程:wordcount+Spark SQL
Spark 基础教程:wordcount+Spark SQL
74 0
|
分布式计算 Linux 流计算
194 Spark Streaming实现实时WordCount
194 Spark Streaming实现实时WordCount
83 0
|
存储 缓存 分布式计算
Spark学习--3、WordCount案例、RDD序列化、RDD依赖关系、RDD持久化(二)
Spark学习--3、WordCount案例、RDD序列化、RDD依赖关系、RDD持久化(二)
|
存储 缓存 分布式计算
Spark学习--3、WordCount案例、RDD序列化、RDD依赖关系、RDD持久化(一)
Spark学习--3、WordCount案例、RDD序列化、RDD依赖关系、RDD持久化(一)
|
SQL 分布式计算 Java
Spark入门以及wordcount案例代码
Spark入门以及wordcount案例代码