开源大数据平台 E-MapReduce Serverless StarRocks 产品介绍

简介: 本文将分享阿里云与 StarRocks 社区合作打造的云上 StarRocks 极速湖仓的云原生产品实践。主要包括四个部分,第一部分介绍 StarRocks 全托管形态,以及免运维服务的 OLAP 云产品;第二部分介绍 StarRocksManager 的实例管理、诊断分析、元数据管理、安全中心等功能;第三部分介绍在社交、在线教育、电商等场景的使用案例;最后是对产品的长短期规划。


摘要:本文将分享阿里云与 StarRocks 社区合作打造的云上 StarRocks 极速湖仓的云原生产品实践。主要包括四个部分,第一部分介绍 StarRocks 全托管形态,以及免运维服务的 OLAP 云产品;第二部分介绍 StarRocks Manager 的实例管理、诊断分析、元数据管理、安全中心等功能;第三部分介绍在社交、在线教育、电商等场景的使用案例;最后是对产品的长短期规划:


  1. StarRocks 产品介绍
  2. StarRocks 功能介绍
  3. StarRocks 场景案例
  4. StarRocks 未来规划


点击查看直播回放


一、StarRocks 产品介绍

阿里云与 StarRocks 社区从2022年初开始以半托管的形态合作。现有大概200客户已经在用半托管的 StarRocks 产品。今年开始做全托管的产品形态,希望帮助大家更进一步降低管理、使用门槛,也配合社区将产品推向更多的 OLAP 用户。

1.png                                    

EMR Serverless StarRocks 是 StarRocks 在阿里云上的一个全托管服务,结合 StarRocks 自身极速和统一的特性,重点围绕降低门槛和降低运维复杂度这两个目标,为客户提供了更多的能力。


易用性方面,在 Serverless 的形态下,提供了全托管、免运维的服务,大家不用再去担心 StarRocks 集群的稳定性,比如日常使用中宕机等问题。在数据管理方面,提供了易用的慢 SQL 分析和集群健康诊断,便捷的导入任务管理,以及可视化的元数据管理。


结合阿里云上的一些产品,集成了云原生的能力。首先是集成了底层资源,结合K8S,实现了即开即用,仅需三四分钟,即可完成一个集群的快速创建。并且提供了后续高效扩缩容、升降配的能力,实现了资源的快速交付。另外,与 DLF 深度集成,实现了整个云上数据湖体系的打通。与 Flink VVP 深度集成,进一步降低开发成本。

image.png

上图展示了 EMR 产品体系。本次介绍重点在 OLAP 部分。StarRocks 是 EMR 推出的第一个全托管形态,接下来还会有 Serverless Doris,以及 Presto 等更多的全托管形态,帮助用户低门槛地去使用大数据的技术栈。

image.png

利用 StarRocks 我们可以构建极速统一的新一代数据架构,在分析层可以通过 StarRocks 统一 OLAP 引擎,覆盖所有 OLAP 场景,这样可以技术栈统一,一份技术及运维,多种 OLAP 分析场景都可以适用。

image.png

StarRocks 系统架构如上图所示,整个系统的核心就是 FE(Frontend)和BE(Backend)。

image.png

EMR 全托管主要是围绕K8S的布署形态,半托管主要是围绕 ECS 的布署形态。半托管,主要提供快速部署的能力,包括监控、告警等基础集群管理能力。全托管更上一层,对于FE、BE自身的服务管理也去托管,这样用户就可以不用关心计算资源这一层的运维和管理。更进一步,期望将平台运维能力,包括扩缩容、集群监控告警等,都进行全托管,从而帮助用户省去更多的运维成本。全托管提供的能力一方面是全方位的服务免运维,另一方面是自动升级的能力。还有一些 Manager 的能力,更好地管理数据,包括导入任务、元数据、权限等。


二、StarRocks 功能介绍

实例管理

image.png

实例管理,主要是快速解决集群在全托管形态下的部署能力和监控能力,是最基础的能力。并且可以更好地实现自动化升级。另外,提供了可视化配置的能力,以及一些监控和告警规则的模板。


诊断与分析

image.png

在日常数据查询或数据应用的过程中经常会碰到 SQL 慢的问题,需要分析其原因,并找到相应的解决方案。EMR StarRocks Manager 提供了可视化的 SQL 诊断分析能力,可以帮助用户快速找到根因。


元数据管理

image.png

目前元数据管理只提供了一个比较基本的能力,即展示了表的内容。后续会实现更多更细粒度的功能,比如关于导入任务的、关于物化视图的、关于外表管理的能力等等。


安全中心

image.png

当前在 Serverless 版本里提供了一个基础的用户基本管理以及库级别的权限控制。因为3.0要做一个社区的权限重构,所以计划会在3.0发布之后去做一个更细粒度的权限控制。


版本功能说明

以下表格中列出了 EMR StarRocks 不同版本功能的差别。


内核层面基本上是保持一致的。个别功能,比如数据湖查询的一些场景下,在迭代节奏上,因为与阿里云内部产品适配会更快一些,所以阿里云的版本推出得更快一些,但最终也都会贡献到社区。Flink VVP CTAS 这种场景,因为跟Flink之间是一个特殊定制的版本,所以无法贡献到社区。


实例运维管理方面,全托管版本提供的可视化、免运维能力范围会更广一些。前文介绍的 Manager 的一些能力,比如可视化数据库/表管理、慢 SQL 分析等,目前也只能在 Serverless 的版本里用到。

image.png

image.png

三、StarRocks 场景案例

image.png

image.png



四、StarRocks 未来规划

image.png

EMR Serverless 版本从今年一月份开始邀测,当时只具备了一些基本能力。从4月10号开始公测之后发布了更多的能力。


Q2的计划,一个是商业化发布,另一个是围绕 DLF 湖仓分析的场景,去做更多的增强,因为在湖仓分析对计算资源的要求更加灵活,所以需要按量付费以及弹性的一些能力。另外,会去提供实例的健康检查,帮助大家快速定位到集群有问题的地方。围绕 Manager,实现物化视图的管理能力,虽然目前物化视图的使用还不多,但随着3.0的发布,存算分离架构发布之后,物化视图会使用得越来越多。还有数据导入管理,以及 SQL Editor 等等。


Q3,在3.0存算分离发布之后,期望能够围绕 Iceberg、Hudi 等湖格式直接应用整个大数据场景,可以使用物化视图以及湖格式的一些能力,两者结合,去快速实现 LakeHouse 的场景。另外,还有重构权限模型,以及 MaxCompute 集成等。


Q4,会在实例的备份和恢复,以及实例迁移方面,增强易用性和产品化。并继续对已有功能做更深层的优化和迭代。


以上就是今年的一个整体规划,当然还会结合客户具体场景需求去做调整。



我们会在钉钉群定期推送精彩文章,邀请技术大牛直播分享
欢迎
钉钉扫码加入产品交流群一起参与讨论~

image.png





目录
相关文章
|
5月前
|
人工智能 分布式计算 DataWorks
大数据AI产品月刊-2025年7月
大数据& AI 产品技术月刊【2025年7月】,涵盖7月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
8月前
|
人工智能 分布式计算 大数据
大数据& AI 产品月刊【2025年4月】
大数据& AI 产品技术月刊【2025年4月】,涵盖4月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
9月前
|
数据采集 机器学习/深度学习 人工智能
面向 MoE 和推理模型时代:阿里云大数据 AI 产品升级发布
2025 AI 势能大会上,阿里云大数据 AI 平台持续创新,贴合 MoE 架构、Reasoning Model 、 Agentic RAG、MCP 等新趋势,带来计算范式变革。多款大数据及 AI 产品重磅升级,助力企业客户高效地构建 AI 模型并落地 AI 应用。
|
4月前
|
人工智能 分布式计算 DataWorks
阿里云大数据AI产品月刊-2025年8月
阿里云大数据& AI 产品技术月刊【2025年 8 月】,涵盖 8 月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
401 2
|
7月前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2025年5月】
大数据& AI 产品技术月刊【2025年5月】,涵盖5月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
6月前
|
存储 搜索推荐 算法
Java 大视界 -- Java 大数据在智能金融理财产品风险评估与个性化配置中的应用(195)
本文深入探讨了Java大数据技术在智能金融理财产品风险评估与个性化配置中的关键应用。通过高效的数据采集、存储与分析,Java大数据技术助力金融机构实现精准风险评估与个性化推荐,提升投资收益并降低风险。
Java 大视界 -- Java 大数据在智能金融理财产品风险评估与个性化配置中的应用(195)
|
7月前
|
人工智能 分布式计算 DataWorks
一体系数据平台的进化:基于阿里云 EMR Serverless Spark 的持续演进
本文介绍了一体系汽配供应链平台如何借助阿里云EMR Serverless Spark实现从传统Hadoop平台向云原生架构的迁移。通过融合高质量零部件供应与创新互联网科技,一体系利用EMR Serverless Spark和DataWorks构建高效数据分析体系,解决大规模数据处理瓶颈。方案涵盖实时数据集成、Lakehouse搭建、数仓分层设计及BI/ML应用支持,显著提升数据处理性能与业务响应速度,降低运维成本,为数字化转型奠定基础。最终实现研发效率提升、运维压力减轻,并推动AI技术深度整合,迈向智能化云原生数据平台。
254 4
|
9月前
|
人工智能 分布式计算 大数据
大数据& AI 产品月刊【2025年3月】
大数据& AI 产品技术月刊【2025年3月】,涵盖3月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。

相关产品

  • 开源大数据平台 E-MapReduce