小白带你重游Spark生态圈!

简介: Spark生态圈

前言

肝了整整一天,终于把Spark的理论精髓给高度总结出来了,亲绘思维导图!让你对Spark生态圈有一个整体的概览!废话不多说,这就开始上图了…

整体思维导图

1、Spark入门

2、Spark RDD

3、Spark SQL

4、Spark Streaming

结语

好了,本篇主要为大家带来的就是博主为大家贡献的五张Spark的思维导图,**看完了是不是有种想要关注博主的冲动呢( ̄▽ ̄)~*****受益的朋友或对大数据技术感兴趣的伙伴记得点赞关注支持一波(^U^)

相关文章
|
9月前
|
分布式计算 大数据 Spark
大数据生态思维导图____2021最新最全Spark生态圈思维导图!
大数据生态思维导图____2021最新最全Spark生态圈思维导图!
85 0
|
SQL 分布式计算 算法
【大数据处理框架】Spark大数据处理框架,包括其底层原理、架构、编程模型、生态圈
【大数据处理框架】Spark大数据处理框架,包括其底层原理、架构、编程模型、生态圈
572 0
|
XML 分布式计算 大数据
Scala 学习 进击大数据Spark生态圈
Scala 学习 进击大数据Spark生态圈
114 0
|
SQL 机器学习/深度学习 存储
Spark框架深度理解二:生态圈
Spark框架深度理解二:生态圈
346 0
Spark框架深度理解二:生态圈
|
存储 分布式计算 监控
大数据基础知识问答----spark篇,大数据生态圈
Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapreduce算法实现的分布式计算,拥有HadoopMapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。
1684 0
|
3月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
200 2
|
3月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
234 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
192 1
|
3月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
99 1