带你读《网络安全等级保护2.0定级测评实施与运维》——1.3 等保 2.0 时代网络安全项目概述

简介: 带你读《网络安全等级保护2.0定级测评实施与运维》——1.3 等保 2.0 时代网络安全项目概述

1.3 等保 2.0 时代网络安全项目概述


在等保 2.0 时代,如何着手开展网络安全等级保护项目,是从事网络安全工作人员关心的重点。按照《信息安全技术 网络安全等级保护实施指南》(GB/T 25058-2019)所列网络安全等级保护实施流程,网络安全等级保护项目分为等级保护对象定级与备案、总体安全规划、安全设计与实施、安全运行与维护、定级对象终止 5 个阶段,如1-1 所示。本书根据此流程为主线规划设计方案,指导用户高质量完成等保 2.0 时代的网络安全项目。

image.png 图 1-1 网络安全等级保护项目的基本流程、

相关文章
|
3月前
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
74 5
|
5月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
163 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
1月前
|
弹性计算 运维 自然语言处理
产品测评 | 感受操作系统智能助手OS Copilot新功能带来的运维效率飞升
近期,我再次评测了阿里云OS Copilot的新版本,发现其在命令执行、任务自动化、文件处理及知识问答等方面表现出色,特别是-t参数显著提升了70%的效率。使用过程中,我发现它不仅简化了复杂任务的处理,还提供了中文解释配置文件的功能,极大地方便了初学者。总结来看,OS Copilot极大地提升了Linux运维效率,但仍需在自然语言理解、用户界面优化和错误处理机制等方面进一步改进。未来若能支持更多操作系统并集成更多实用工具,必将成为Linux用户的得力助手。
|
1月前
|
运维 算法 Ubuntu
Copilot测评报告——2025如果你需要做运维,强烈推荐你使用Copilot
作为一名开发工程师,我曾参与阿里云Copilot的测评工作。2025年最新版Copilot支持Alinux、CentOS、Ubuntu、Anolis OS等操作系统,并新增了Agent模式,可直接执行命令并返回系统健康度等信息,大幅提升了运维效率。它还具备复杂任务理解能力,能处理定时任务和脚本编写,结合管道符号使用,极大便利了运维工作。强烈推荐给中高级运维工程师使用。
141 22
|
1月前
|
运维 自然语言处理 Ubuntu
解锁高效运维新姿势!操作系统智能助手OS Copilot新功能实战测评
阿里云OS Copilot经过多轮迭代,现已支持多端操作系统(包括Ubuntu、CentOS、Anolis OS等)及aarch64架构,极大扩展了其适用范围。新特性包括阿里云CLI调用、系统运维及调优工具的直接调用、Agent模式实装以及复杂任务处理能力。这些更新显著提升了用户体验和效率,特别是在处理紧急情况时,OS Copilot能快速查找并执行命令,节省大量时间和精力。此外,通过自然语言交互,用户可以轻松完成如系统健康检查、文件操作及日志分析等任务。总之,OS Copilot已从内测时的辅助工具进化为合格的贴身管家,极大地简化了日常运维工作。
|
2月前
|
SQL 运维 安全
网络安全等级保护2.0 定级、评测、实施与运维-复习题目资料
本文详细总结了网络信息安全等级保护的练习题,包括单选题、多选题、判断题和简答题。供朋友们参考复习,学习相关领域知识参考。
|
3月前
|
存储 运维 安全
Spring运维之boot项目多环境(yaml 多文件 proerties)及分组管理与开发控制
通过以上措施,可以保证Spring Boot项目的配置管理在专业水准上,并且易于维护和管理,符合搜索引擎收录标准。
79 2
|
5月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
180 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
5月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
217 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
5月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
161 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台

热门文章

最新文章