带你读《存储漫谈:Ceph原理与实践》——1.2.1 有中心架构

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
对象存储 OSS,恶意文件检测 1000次 1年
简介: 带你读《存储漫谈:Ceph原理与实践》——1.2.1 有中心架构

1.2  各主流分布式方案对比


分布式存储系统种类繁多,通常按照使用场景,可将分布式存储系统划分为分布式块存储、分布式文件存储以及分布式对象存储 3 类,如图 1-6 所示。


image.png 图 1-6 分布式存储系统分类

块存储将裸磁盘空间直接映射给主机使用,主机层面操作系统识别出磁盘后,可对磁盘进行分区、格式化文件系统或者直接进行裸设备读写。块存储使用线性地址空间,不关心数据的组织方式以及结构,读写速度更快,但共享性较差。

文件存储将文件系统直接挂载给主机使用,主机层面操作系统可对挂载后的文件系统直接进行读写,读写操作遵循 POSIX(Portable Operating System Interface of UNIX)语义,类似操作本地文件系统。文件存储使用树状结构以及路径访问方式,更方便理解、记忆,更适合结构化数据的存取,共享性更好,但读写性能较差。

对象存储介于块存储与文件存储之间,以 restful api 或者客户端 sdk 的形式供用户使用,更适合非结构化数据的存取。对象存储使用统一的底层存储系统,管理文件以及底层介质的组织结构,然后为每个文件分配一个唯一的标识,用户需要访问某个文件,直接提供文件的标识即可。

除以上 3 种分布式存储方案的划分外,分布式存储系统还可分为分布式数据库系统和分布式缓存系统等。

从架构角度切入,无论是分布式块存储系统、分布式对象存储系统、分布式文件存储系统,抑或是分布式数据库系统、分布式缓存系统,其架构无外乎以下两种。

有中心架构

有中心架构下,分布式存储集群实现统一的元数据服务,元数据统一存储并管理,客户端发起对数据的读写前,先向元数据服务器发起读写请求。

无中心架构

无中心架构下,分布式存储系统没有单独的元数据服务,元数据与数据一样,切片打散后存储在多台存储服务器上,客户端通过特定算法进行计算,确定元数据及数据的存储位置,并直接向存储节点相关进程发起数据的读写访问请求。依照使用的算法类型,无中心架构又可细分为私有算法模式以及一致性散列(Hash)模式。下文以 HDFS、Ceph、Swift 为例,对 3 种方案做简要对比。


1.2.1  有中心架构

HDFS(Hadoop Distribution File System)是有中心分布式存储系统的典型代表。在这种架构中,一部分节点 Name Node 用于存放管理数据(元数据文件),另一部分节点Data Node 用于存放业务数据(数据文件),其系统架构如图 1-7 所示。

在图 1-7 中,如果客户端需要从某个文件读取数据,首先从 Name Node 获取该文件的位置信息(具体在哪个 Data Node),然后从该 Data Node 上获取具体的数据。在该架构中Name Node通常是主备部署,而Data Node则是由大量服务器节点构成一个存储集群。由于元数据的访问频度和访问量相对数据都要小很多(参见后文 HDFS 使用场景),因此Name Node 通常不会成为性能瓶颈;Data Node 在集群中通常将数据以副本形式存放,该策略下既可以保证数据的高可用性,又可以分散客户端的请求。因此,这种分布式存储架构可以横向扩展 Data Node 的数量来增加存储系统的承载能力,也即实现系统的动态横向扩展。

HDFS 目前主要用于大数据的存储场景,HDFS 也是 Hadoop 大数据架构中的存储组件。HDFS 在开始设计的时候,就已经明确了它的应用场景(即大数据服务),具体如下:

image.png

图 1-7 HDFS 系统架构

(1)对大文件存储的性能要求比较高的业务场景

HDFS 采用集中式元数据的方式进行文件管理,元数据保存在 Name Node 的内存中,文件数量的增加会占用大量的 Name Node 内存。即当 HDFS 存储海量小文件时,元数据会占用大量内存空间,引起整个分布式存储系统性能的下降。由于此限制,HDFS 更适合应用在存储大文件的使用场景,文件大小以百 MB 级别或者 GB 级别为宜。

(2)读多写少的业务场景

HDFS 的数据传输吞吐量比较高,但是数据写入时延比较差,因此,HDFS 不适合频繁的数据写入场景,但就大数据分析业务而言,其处理模式通常为一次写入、多次读取,然后进行数据分析工作,HDFS 可以胜任该场景。

相关实践学习
块存储快速入门
块存储是阿里云为云服务器ECS提供的块设备产品。通过体验挂载数据盘、分区格式化数据盘(Linux)、创建云盘快照、重新初始化数据盘、使用快照回滚云盘和卸载数据盘等功能,带您快速入门块存储。
相关文章
|
2天前
|
决策智能 数据库 开发者
使用Qwen2.5+SpringBoot+SpringAI+SpringWebFlux的基于意图识别的多智能体架构方案
本项目旨在解决智能体的“超级入口”问题,通过开发基于意图识别的多智能体框架,实现用户通过单一交互入口使用所有智能体。项目依托阿里开源的Qwen2.5大模型,利用其强大的FunctionCall能力,精准识别用户意图并调用相应智能体。 核心功能包括: - 意图识别:基于Qwen2.5的大模型方法调用能力,准确识别用户意图。 - 业务调用中心:解耦框架与业务逻辑,集中处理业务方法调用,提升系统灵活性。 - 会话管理:支持连续对话,保存用户会话历史,确保上下文连贯性。 - 流式返回:支持打字机效果的流式返回,增强用户体验。 感谢Qwen2.5系列大模型的支持,使项目得以顺利实施。
118 5
使用Qwen2.5+SpringBoot+SpringAI+SpringWebFlux的基于意图识别的多智能体架构方案
|
5天前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
44 11
|
7天前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
33 11
|
9天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
44 11
|
11天前
|
自然语言处理 负载均衡 Kubernetes
分布式系统架构2:服务发现
服务发现是分布式系统中服务实例动态注册和发现机制,确保服务间通信。主要由注册中心和服务消费者组成,支持客户端和服务端两种发现模式。注册中心需具备高可用性,常用框架有Eureka、Zookeeper、Consul等。服务注册方式包括主动注册和被动注册,核心流程涵盖服务注册、心跳检测、服务发现、服务调用和注销。
46 12
|
23天前
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
|
19天前
|
消息中间件 SQL 中间件
大厂都在用的分布式事务方案,Seata+RocketMQ带你打破10万QPS瓶颈
分布式事务涉及跨多个数据库或服务的操作,确保数据一致性。本地事务通过数据库直接支持ACID特性,而分布式事务则需解决跨服务协调难、高并发压力及性能与一致性权衡等问题。常见的解决方案包括两阶段提交(2PC)、Seata提供的AT和TCC模式、以及基于消息队列的最终一致性方案。这些方法各有优劣,适用于不同业务场景,选择合适的方案需综合考虑业务需求、系统规模和技术团队能力。
133 7
|
19天前
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
33 1
|
8天前
|
弹性计算 负载均衡 安全
云端问道-Web应用上云经典架构方案教学
本文介绍了企业业务上云的经典架构设计,涵盖用户业务现状及挑战、阿里云业务托管架构设计、方案选型配置及业务初期低门槛使用等内容。通过详细分析现有架构的问题,提出了高可用、安全、可扩展的解决方案,并提供了按量付费的低成本选项,帮助企业在业务初期顺利上云。
|
8天前
|
弹性计算 负载均衡 安全
企业业务上云经典架构方案整体介绍
本次课程由阿里云产品经理晋侨分享,主题为企业业务上云经典架构。内容涵盖用户业务架构现状及挑战、阿里云业务托管经典架构设计、方案涉及的产品选型配置,以及业务初期如何低门槛使用。课程详细介绍了企业业务上云的全流程,帮助用户实现高可用、稳定、可扩展的云架构。

热门文章

最新文章