横向对比 11 种算法,多伦多大学推出机器学习模型,加速长效注射剂新药研发

简介: 横向对比 11 种算法,多伦多大学推出机器学习模型,加速长效注射剂新药研发

   据《中国居民营养与慢性病状况报告(2020 年)》显示,2019 年我国因慢性病导致死亡占总死亡的 88.5%,可见,慢性病已成为威胁人类健康的一大「杀手」。以慢性病中被学者们称为「人类最糟糕疾病」的精神分裂症为例,患者要想完全康复,就需要进行较长时间的维持治疗。但这期间,患者服药可能由于各种原因中断,从而造成复发。

为解决慢性病人服药依从性差的情况,长效注射剂问世,该药是将足够剂量的药物溶解于某种制剂中,通过注射途径进入体内形成小型药物「储存仓库」,再在体内缓慢释放药物,起到稳定的治疗作用。与传统药物相比,长效注射剂有给药间隔长、作用迅速、药物剂量稳定等优点。

但另一方面,这种新型药物的研发也颇具挑战,比如,为了令药物在规定时间范围内在体内达到最佳释放量,就需对多种候选制剂进行大量、广泛实验。此过程繁琐且耗时长,成为长效注射剂进一步发展的瓶颈。

近期,来自多伦多大学 (University of Toronto) 的研究人员开发了一个机器学习模型,相关实验成果显示该模型能准确预测长效注射剂药物释放速率,有效加速长效注射剂研发。目前该研究已发布在《Nature Communications》期刊上,标题为「Machine learning models to accelerate the design of polymeric long-acting injectables」。

目前该成果已发布在《Nature Communications》

论文地址:

https://www.nature.com/articles/s41467-022-35343-w#Abs1

实验概述

长效注射剂制剂种类多样,一般是脂类和合成聚合物。下图展示了传统和数据驱动的长效注射剂制剂研发方法对比。

图1:传统和数据驱动的长效注射剂制剂研发方法示意图

a 图:美国食品及药物管理局批准的长效注射剂制剂给药途径。

b 图:传统长效注射剂制剂研发的典型试错循环。

c 图:本研究的工作流程概览,即用训练好的机器学习模型加速长效注射剂制剂研发过程。

本实验数据集由先前发表的研究成果构建,同时还添加了由 Web of Science 引擎中搜索出来的外部来源数据。具体来看,数据集包括了 181 种药物及 43 种药物-聚合物组合释放量(给定时间内释放的药物分子数量)。同时,研究人员将构建好的数据集分为两个子集,分别用于模型训练和测试。

长效注射剂数据集

发布机构:多伦多大学

包含数量:181 种药物和 43 种药物-聚合物组合释放量

预估大小:394.1 KB

发布时间:2022 年

下载地址:hyper.ai/datasets/23625**

实验过程

本项研究中,研究人员共训练了 11 种机器学习算法,包括多元线性回归 (MLR)、最小绝对值收缩和选择算子 (Lasso)、偏最小二乘回归 (PLS)、决策树 (DT)、随机森林 (RF)、光梯度增强机 (LGBM)、极端梯度增强 (XGB)、自然梯度增强 (NGB)、支持向量回归 (SVR)、 k 最近邻算法 (k-NN) 以及神经网络 (NN)。

模型选择

为了评估这些机器学习模型的预测性能,研究人员采用了嵌套交叉验证的方法,该方法包括内部(训练和验证)和外部(测试)循环两部分。具体过程为,研究人员先将数据集按照药物-聚合物组合进行分组,再分别对每个机器学习模型进行 10 次嵌套交叉验证实验。

最终,各个机器学习模型在内部和外部嵌套交叉验证循环中的预测性能总结如下表 1 和图 2 所示。表 1 为嵌套交叉验证 (n=10) 中,使用不同机器学习算法预测药物释放后得到的平均绝对误差 (MAE) 值以及平均标准误差 (σM,括号内显示)。从表中可以看到,基于树 (tree-based) 的机器模型整体上要比线性、基于实例和深度学习的模型更加准确 (MAE<0.16)。

表1:各机器学习模型嵌套交叉验证中预测性能情况

图2为嵌套交叉验证 (n=10) 中获得的药物释放预测量的绝对误差 (AE) 值。结合表 1 和图 1 的信息,基于 LGBM 的模型在内部和外部循环中 MAE 值以及 AE 值均为 11 个模型中最小。因此,研究人员认为基于 LGBM 的模型是预测性能最好的模型。

图 2:各算法模型整体预测性能情况

图中方框内的黑色圆圈和黑色虚线分别代表每个模型的 MAE 值和 AE 值。

模型优化

为了进一步提高机器学习模型的泛化能力,研究人员又通过聚类分析对 17 个特征的 LGBM 模型进行了优化、改进。

这里他们采用了最远邻聚类算法 (farthest neighbor clustering algorithm),如下图所示,将输入特征排列成一个层次结构,研究人员发现 17 个特征中存在冗余。经过改进后,最终确定 15 个特征的 LGBM 模型表现最优。

图 3:初始17个输入特征的Spearman相关系数热力图

深蓝色表示绝对 Spearman 相关系数 (根据等级资料研究两变量间相关关系的方法) 为 1,粉色表示绝对 Spearman 相关系数为 0。热力图旁边附有一个树形图,显示通过聚合层次聚类分析确定的特征集群的层次结构。

实验结果

得到上述最优模型后,研究人员进行了两项测试,其一是使用该模型预测某一种长效注射剂药物释放曲线,其二是使用该模型预测测试集中药物-聚合物的药物释放曲线,并将得到的结果分别与实验药物释放曲线进行比较,结果如下图所示。

图 4 显示了某种所选长效注射剂的预测和实验药物释放曲线的比较,图 5 则显示了药物-聚合物的药物释放曲线和实验药物释放曲线比较,可以看到在两种情况下,预测值和实验值均基本一致,因此,研究人员认为基于 LGBM 算法的模型能够准确预测长效注射剂药物释放速率。

图 4:数据集中长效注射剂预测和实验药物释放曲线对比

图 5:药物-聚合物预测和相应实验药物释放曲线对比

加速联盟:助力科研新范式落地

值得注意的是,本研究成果的作者 Christine Allen 以及 Alán Aspuru-Guzik 都来自加速联盟 (The Acceleration Consortium,AC)。加速联盟诞生于 2021 年,是学术界、工业界和政府之间的一项新的全球性合作,总部位于加拿大多伦多大学,其愿景是利用 AI 和机器人技术加速发现和设计新材料和分子。

「我们的目标是加速科学发展,」加速联盟主任 Alán Aspuru-Guzik 称,「为了实现这一目标,我们意识到可以将汽车自动驾驶的思路扩展到自动化实验室,利用 AI 和自动化技术用更智能的方式进行实验。

图 6:加速联盟,一位科学家从自动固体分配机器人中取出预先分配好的试剂

值得关注的是,就在上个月加速联盟刚刚获得了加拿大首席研究卓越基金 (Canada First Research Excellence Fund,CFREF) 2 亿美元的拨款,该笔拨款将用于支持联盟「自动驾驶实验室」(self-driving labs) 领域的相关工作。对此,多伦多大学校长 Meric Gertler 谈道,「这些对 AI 驱动研究和创新方面的重大投资,有望改善加拿大乃至全世界人民的生活」。


相关文章
|
5月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
1038 109
|
6月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
394 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
4月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
7月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
522 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
6月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
7月前
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (4):模型微调SFT、DPO、GRPO
阿里云人工智能平台 PAI 提供了完整的模型微调产品能力,支持 监督微调(SFT)、偏好对齐(DPO)、强化学习微调(GRPO) 等业界常用模型微调训练方式。根据客户需求及代码能力层级,分别提供了 PAI-Model Gallery 一键微调、PAI-DSW Notebook 编程微调、PAI-DLC 容器化任务微调的全套产品功能。
|
7月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
7月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
7月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1429 6

热门文章

最新文章