带你读《智慧光网络:关键技术、应用实践和未来演进》——2.2.1 光纤通信的发展历程和技术特性

简介: 带你读《智慧光网络:关键技术、应用实践和未来演进》——2.2.1 光纤通信的发展历程和技术特性

2.2 光纤技术


光纤是光传播的基本媒介,是光网的物理基础之一。了解光纤的发展历程,掌握光纤的技术原理和技术特性,将帮助我们更好地理解光纤光缆的技术发展是如何匹配智慧光网络的

整体发展需求的。


2.2.1 光纤通信的发展历程和技术特性


光纤通信的原理是光导纤维内外介质的光学性质差异让光信号始终在光导纤维中持续全反射行进,最终达到传输光信号的目的。在实际应用中,光纤通信系统使用的不是单根光纤,而是将许多根光纤聚集在一起组成的光缆。光纤通信的发展极其迅速,体现在光纤应用的数量、光纤传输能力、光纤应用场景3 个方面。


(1)全球敷设光缆的长度和覆盖的面积逐年呈几何式增长。以我国为例,2010—2016 年,全国光缆线路总长度从996 万km 增长到3041 万km,仅2016 年新增铺设长度554 万km。


(2)传输信息的带宽能力快速提升。2019 年,中国信息通信科技集团在光通信技术上再

次取得突破性进展,科研人员在国内首次实现1.06Pbit/s 超大容量WDM 及空分复用(SDM,Space Division Multiplex)的光传输系统实验,可以实现近300 亿人在一根光纤上同时通话。


(3)光纤应用场景逐渐扩展。最典型的光纤接入(FTTx,Fiber To The x)就是实现以“窄带+ 铜缆”为主的网络向以“宽带+ 光纤”为主的网络转变的具体实践,这就是网络发展历史上著名的“光进铜退”。


光纤快速发展的背后,是其具有体积小、重量轻、含金属少、抗电磁干扰、抗辐射、保密、频带宽、抗干扰、价格便宜等众多技术优势。


1.光纤构造和光纤模式

光在跨越不同介质交界面时一般会同时发生折射和反射,即能量一部分进入新介质折射

传播,一部分重新反射到原始介质中传播。但当光从光密介质(折射率较高的介质)射向光疏介质(折射率较低的介质)时,当入射角超过某一临界角度时,折射光线完全消失,只剩下反射光线。


人们根据光的全反射原理设计和制造光纤,光纤一般由纤芯、包层两种不同折射率的材料组成,通过全反射技术使光的所有能量在纤芯中持续以最小的信号衰耗传输。


光的本质是一种频率极高(波长极短)的电磁波,如果我们把每一种能在光纤中传播的光信号入射角称为一种模式,并通过麦克斯韦方程组探究光信号在光纤中传播模式的可能性,一种传播模式就是光在光纤中的一种可能的能量分布状态,代表着光的一个传播角度。传播角度越小,模式的级数也就越低。严格按照光纤中心传播的光纤(也就是传播角度为0°)模式被称为基模。抛开复杂的推导公式,从最终呈现的效果来看,需要记住两个定性的结论。


(1)当光纤纤芯直径远大于光波波长时,对于这个波长范围的光,光纤会存在着几十种传播模式,这种光纤被称为多模光纤。如一般多模光纤的纤芯径为50μm 左右,而光纤中传播的波长一般为850 ~ 953nm。


(2)当光纤纤芯直径与光波波长为同一数量级时,只允许一种模式(基模)的光纤在其中传播,其他所有高阶的次模全部被截止,这种光纤称为单模光纤,它的纤芯径为8.5 ~ 9.5μm,传播的波长一般为1310nm 或1550nm。单模光纤从原理上屏蔽了光信号的模式色散,因此非常有利于长距离、大带宽的信号传播。在单模光纤中,光能量不可能完全集中在纤芯的一个“点”上传输,而是大部分在纤芯内传输,少部分在包层中传输。因此纤芯直径并不完全等效于光能量的分布。我们一般用模场直径(MFD,Mode Field Diameter)描述单模光纤中光能量的集中程度。MFD 越小,光的能量密度也就越大,后面将专门阐述光纤中光能量密度过大时会引起光纤的非线性效应问题。


光纤构造和光纤模式是光通信技术工作者最熟悉的基本技术,也是智慧光网络阶段多种新光纤发展的技术路径。后面将介绍针对长距离传输研发的超低损、大有效面积光纤,以及

提升单模光纤传输容量使用的模式复用技术。


2.光纤损耗

光纤损耗是光信号经光纤传输后,由于吸收、散射等原因引起光功率的减小,它直接决定了光纤通信的传输距离。按照机理分类,其可分为吸收损耗、散射损耗、辐射损耗和弯曲衰耗等。本节将介绍在智慧光网络中最关注的两类光纤损耗:光纤材料原子的本征吸收损耗、非线性的散射损耗。


(1)本征吸收是制造光纤的基础材料(如纯的SiO2)所引入的吸收效应,它是决定光纤在某个频谱区域具有传输窗口的主要物理因素。本征吸收发生在两个区域:短波长紫外区域的电子吸收带、长波长近红外区域的原子振动吸收带。


早期的光纤预制棒中存在的OH– 离子浓度很高,在波长1380nm、1240nm、950nm 处产生了大的吸收峰。当前商用的单模光纤通过掺杂等手段已经能把OH– 离子的浓度降到1ppb 以下,进而大幅降低了多个波段的损耗系数。如图2-2 所示,这可以将多个波段进行复用,最终提升光纤的传输容量。在后面多个章节中,都将提到目前智慧光网络如何从使用传统的C 波段到使用C 扩展波段,再到使用C+L 波段一起完成长距离光信号的传输。

image.png

图2-2 光纤在不同波长的衰减特性


(2)光纤介质的非线性效应来自光纤的非线性极化效应。入纤光功率超过一定数值后,由于光纤有效截面积较小(50 ~ 80μm2),光纤芯径中的光功率密度过高,从而诱导了光纤材料的非线性极化。在早期的同步传输网中,进入光纤的光功率不大,但在波分系统中,WDM 技术使一根光纤中有了数十条甚至上百条光波道,大功率、多波长光信号被耦合进一根光纤很小的截面上,光纤开始表现出非线性特性。如图2-3 所示,列出了光纤介质的非线性效应种类。

image.png


图2-3 光纤介质的非线性效应种类

值得一提的是,光纤的非线性效应属于限制光纤传输的不利因素,但有时又可以发挥积极的作用。如在后续章节中,我们将介绍一种利用受激拉曼散射原理制作的拉曼光纤放大器(FRA,Fiber Raman Amplifier),相比其他光纤放大器它具备一些独特的优势,并在智慧光网络中被广泛应用。


3.光纤色散

光纤中传输的光信号脉冲的不同频率或不同的模式分量会以不同的速度传播,到达一定距离后必然产生脉冲展宽,这种现象被称为光纤色散。光纤色散分为色度色散、偏振模色散和模式色散等。其中模式色散只出现在多模光纤中,指每种光纤模式对同一频率的光波有着不同的传播速度,它不是本书讨论的重点。


(1)色度色散(CD,Chromatic Dispersion),它包括材料色散和波导色散,两者虽然在原理上存在差异,但都造成了不同波长在光纤中传输时所引起的光脉冲展宽。


(2)偏振模色散(PMD,Polarization Mode Dispersion),波长在单模光纤中占用两个正交的偏振态,这两个偏振态在光纤传输过程中受材料、温度、压力等因素干扰变得逐渐不同步,最终造成脉冲展宽。


光纤色散的特性对光信号传输而言都是不利的,因此其需要一些补偿技术。补偿技术既有物理层面的色散补偿技术,又有数字层面的光模块DSP 数字补偿技术。

相关文章
|
18天前
|
编解码 异构计算
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
56 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
1月前
|
边缘计算 容灾 网络性能优化
算力流动的基石:边缘网络产品技术升级与实践探索
本文介绍了边缘网络产品技术的升级与实践探索,由阿里云专家分享。内容涵盖三大方面:1) 云编一体的混合组网方案,通过边缘节点实现广泛覆盖和高效连接;2) 基于边缘基础设施特点构建一网多态的边缘网络平台,提供多种业务形态的统一技术支持;3) 以软硬一体的边缘网关技术实现多类型业务网络平面统一,确保不同网络间的互联互通。边缘网络已实现全球覆盖、差异化连接及云边互联,支持即开即用和云网一体,满足各行业需求。
|
18天前
|
计算机视觉
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
45 12
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
|
20天前
|
计算机视觉
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
65 10
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
|
20天前
|
编解码 异构计算
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
81 7
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
23天前
|
机器学习/深度学习 算法 文件存储
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
70 10
YOLOv11改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
|
18天前
|
机器学习/深度学习 算法 文件存储
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
30 4
RT-DETR改进策略【模型轻量化】| MoblieNetV3:基于搜索技术和新颖架构设计的轻量型网络模型
|
1月前
|
存储 人工智能 安全
AI时代的网络安全:传统技术的落寞与新机遇
在AI时代,网络安全正经历深刻变革。传统技术如多因素身份认证、防火墙和基于密码的系统逐渐失效,难以应对新型攻击。然而,AI带来了新机遇:智能化威胁检测、优化安全流程、生物特征加密及漏洞管理等。AI赋能的安全解决方案大幅提升防护能力,但也面临数据隐私和技能短缺等挑战。企业需制定清晰AI政策,强化人机协作,推动行业持续发展。
74 16
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
90 17
|
2月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章