昨天推导了一下交叉熵的反向传播梯度,今天再来推导一下层归一化(LayerNorm),这是一种常见的归一化方法。
前向传播
假设待归一化的维向量为,均值和标准差分别是和,LayerNorm的参数是和,那么层归一化后的输出为:
这里的极小量是为了防止标准差为0导致溢出。为了简单起见,我们不加上这一项,原公式也就变成了:
反向传播
假设损失函数对输出的梯度是,那么这里需要求三个梯度:、和。
令,那么原公式就变成了:
两个参数的梯度非常简单:
对输入的梯度等于:
推导过程
对输入的梯度可以写成:
这里只需要计算最后一项就行了:
其中只有当的时候才会等于1,否则都等于0。这里只需要求出均值和标准差对的梯度就行了。直接给出结论,证明比较简单,放在了文末:
代入可以得到:
最后带入梯度中可以得到:
均值和标准差的梯度