基于DNN网络的信道估计matlab仿真,仿真输出信道估计值的mse指标

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 基于DNN网络的信道估计matlab仿真,仿真输出信道估计值的mse指标

1.算法仿真效果
matlab2022a仿真结果如下:
31aace5ca5c9c452328b83c38c261641_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6373452003a0b4358e158bcfd89b2535_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2ddb62365167597b8428467525064ba9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
在信道变化迅速的系统中,通常依靠频域的导频子载波进行信道估计。导频子载波按照特定的规则插入到时频两维资源中。导频子载波处的信道响应可以通过最小二乘法(least-square,ls)和线性最小均方误差法(linearminimummeansquareerror,lmmse)进行估计,其他子载波处的信道响应则通过插值得到。基于判决反馈的盲信道估计方法将判决后的数据反馈至信道估计器进行去除调制信息操作,从而得到信道响应结果。基于相位的估计算法利用dqpsk调制信号幅度恒定相位为的整数倍的特性,利用接收信号相位在乘4、模2π、除以4的操作后,所有星座点都将变换到正实轴上(相位为0,幅度为1),这一操作相当于去除了dqpsk的调制信息,无需对信号进行判决。

    近几年,人工智能尤其是深度学习在无线通信物理层中也得到了广泛的应用。深度学习(Deep Learning, DL),由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前相关技术。它在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其它相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
    在所用的结构中使用DNN的原因是,DNN是唯一可以在任何类型(有监督的和无监督的)任何地方(星座整形器,信道估计器和检测器)应用的机器学习算法。例如,即使支持向量机(它是有监督的二进制分类器),尽管其检测性能良好,但也不能应用于星座整形器或信道估计器等其他部分(因为这两个部分是无监督的。DNN是光学通信中使用最广泛的深度学习技术,并且是传统方法的适当替代方法。DNN的复杂度低,响应速度快。它可以建模复杂的多维非线性关系。由于这些优点,在FSO中应用DNN进行星座整形,信道估计和检测可以显着降低复杂性,成本,等待时间和处理,同时保持系统性能。

      深度神经网络的内部神经网络有3层,第一层输入,最后一层输出,其余中间都是隐藏层,层与层之间全连接。在局部的小模型来讲和感知机是一样的,都是线性关系+激活函数,即

Layer 1: Layer 2:

Z[1] = W[1]·X + b[1] Z[2] = W[2]·A[1] + b[2]
A[1] = σ(Z[1]) A[2] = σ(Z[2])

X其实就是A[0],所以不难看出:

Layer i:
Z[i] = W[i]·A[i-1] + b[i]
A[i] = σ(Z[i])

(注:σ是sigmoid函数)

因此不管我们神经网络有几层,都是将上面过程的重复
2439500922d21a7feaf01169df7bc3f8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.MATLAB核心程序
```for i = 1:length(SNRS);
i
L = 3;
SNR = SNRS(i);
P=[1+1i,1-1i,2-1i,1+2i]';

for i=1:20000
    hh     = randn(3,1)+1i*randn(3,1);
    yy     = comsystem(P,L,hh,SNR);

    h(:,i) = hh;
    y(:,i) = yy;
end
n         = size(y,2);
indim     = size(y,1);
outdim    = size(h,1);

inputdim  = indim*2;
outputdim = outdim*2;

realy     = real(y);
imagy     = imag(y);

yy        = zeros(inputdim,n);

yy(1:2:inputdim-1,:) = realy;
yy(2:2:inputdim,:)   = imagy;

realh     = real(h);
imagh     = imag(h);

hh        = zeros(outputdim,n);

hh(1:2:outputdim-1,:) = realh;
hh(2:2:outputdim,:)   = imagh;

%Normalization
din      = min(yy')';
Tdin     = max(yy')';
trainYY  = yy;

for i = 1:n
    tmp          = yy(:,i);
    tmp          = (tmp-din)./(Tdin-din);
    trainYY(:,i) = tmp;
end

dout   = min(hh')';
Tdout  = max(hh')';

trainHH = hh;
for i = 1:n
    tmp          = hh(:,i);
    tmp          = (tmp-dout)./(Tdout-dout);
    trainHH(:,i) = tmp;
end


pr      = zeros(inputdim,2);
pr(:,1) = 0;
pr(:,2) = 1;
hiden   = 18;



net = newff(pr,[hiden,outputdim],{'logsig','purelin'},'trainlm');
net.trainParam.lr=0.01;
net.trainParam.goal=1e-5;
net.trainParam.epochs=40;
net=train(net,trainYY,trainHH);

if SNR==1
   save dat\DNN_SNR1.mat net din Tdin dout Tdout
end
if SNR==2
   save dat\DNN_SNR2.mat net din Tdin dout Tdout
end
if SNR==3
   save dat\DNN_SNR3.mat net din Tdin dout Tdout
end
if SNR==4
   save dat\DNN_SNR4.mat net din Tdin dout Tdout
end
if SNR==5
   save dat\DNN_SNR5.mat net din Tdin dout Tdout
end
if SNR==6
   save dat\DNN_SNR6.mat net din Tdin dout Tdout
end
if SNR==7
   save dat\DNN_SNR7.mat net din Tdin dout Tdout
end
if SNR==8
   save dat\DNN_SNR8.mat net din Tdin dout Tdout
end
if SNR==9
   save dat\DNN_SNR9.mat net din Tdin dout Tdout
end
if SNR==10
   save dat\DNN_SNR10.mat net din Tdin dout Tdout
end

if SNR==11
   save dat\DNN_SNR11.mat net din Tdin dout Tdout
end
if SNR==12
   save dat\DNN_SNR12.mat net din Tdin dout Tdout
end
if SNR==13
   save dat\DNN_SNR13.mat net din Tdin dout Tdout
end
if SNR==14
   save dat\DNN_SNR14.mat net din Tdin dout Tdout
end
if SNR==15
   save dat\DNN_SNR15.mat net din Tdin dout Tdout
end
if SNR==16
   save dat\DNN_SNR16.mat net din Tdin dout Tdout
end
if SNR==17
   save dat\DNN_SNR17.mat net din Tdin dout Tdout
end
if SNR==18
   save dat\DNN_SNR18.mat net din Tdin dout Tdout
end
if SNR==19
   save dat\DNN_SNR19.mat net din Tdin dout Tdout
end
if SNR==20
   save dat\DNN_SNR20.mat net din Tdin dout Tdout
end

end
```

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
2月前
|
算法 5G 数据安全/隐私保护
大规模MIMO通信系统信道估计matlab性能仿真,对比LS,OMP,MOMP以及CoSaMP
本文介绍了大规模MIMO系统中的信道估计方法,包括最小二乘法(LS)、正交匹配追踪(OMP)、多正交匹配追踪(MOMP)和压缩感知算法CoSaMP。展示了MATLAB 2022a仿真的结果,验证了不同算法在信道估计中的表现。最小二乘法适用于非稀疏信道,而OMP、MOMP和CoSaMP更适合稀疏信道。MATLAB核心程序实现了这些算法并进行了性能对比。以下是部分
245 84
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
37 2
|
1月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
1月前
|
数据采集 算法 5G
基于稀疏CoSaMP算法的大规模MIMO信道估计matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
该研究采用MATLAB 2022a仿真大规模MIMO系统中的信道估计,利用压缩感知技术克服传统方法的高开销问题。在稀疏信号恢复理论基础上,通过CoSaMP等算法实现高效信道估计。核心程序对比了LS、OMP、NOMP及CoSaMP等多种算法的均方误差(MSE),验证其在不同信噪比下的性能。仿真结果显示,稀疏CoSaMP表现优异。
61 2
|
28天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
57 0
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。