Spark RDD编程基础(Scala版)

简介: Spark RDD编程基础(Scala版)

RDD :弹性分布式数据集(分布式的元素集合)

Spark中,对数据的所有操作不外乎创建RDD,转化已有的RDD以及调用RDD操作进行求值,Spark会自动将RDD中的数据分发到集群上,并将操作并行化执行。

1、创建RDD

Spark有两种创建RDD的方式,一种是读取外部数据集,一种是在驱动器中对一个集合进行并行化。

最简单的创建RDD的方法就是讲程序中已有的一个集合传给SparkContext的parallelize()方法,这种方法可以快速的创建出RDD并对RDD进行操作,但是这种方法并不常用,方法如下:

val lines = sc.parallelize(List("pandas","i like pandas"))

常用的方法是从外部存储中读取数据来创建RDD,方法如下:

val lines = sc.textFile("/path/to/README.md")

2、RDD操作


RDD支持两种操作:转化操作和行动操作。

转化操作是会返回一个新的RDD的操作,比如map(),filter(),行动操作是向驱动器程序返回结果或者把结果写入外部系统的操作,会触发实际的计算,比如count(),first()。如果在实际操作中分不清自己的操作是什么操作,可以查看当前操作的返回值类型,转化操作返回的是RDD,行动操作返回的是其他类型。

转化操作   (是一种lazy操作)举例:filter()转化    下面程序展示了将log.txt中的error过滤出来。

val inputRDD = sc.textFile("log.txt")
val errorRDD = inputRDD.filter(line => line.contains("error"))

行动操作   会把最终的结果返回到驱动程序,或者写入外部存储系统中,由于行动操作需要生成实际的输出,他们会强制执行那些求值必须用到的RDD的转化操作。


例:在scala中使用行动操作对错误进行计数

println("Input had " + badLinesRDD.count() + "concerning lines")
println("Here are 10 examples:")
badLinesRDD.take(10).foreach(println)

3、常见的转化操作和行动操作


基本RDD


最常用的转化操作是map()和filter()


map()接收一个函数,把这个函数用于RDD中的每一个元素,将函数的返回结果作为结果RDD中对应元素的值。


filter()接收一个函数,并将RDD中满足该函数的元素放入新的RDD中返回。


例:  inputRDD  =  {1,2,3,4}

       Mapped RDD (x*x)  = {1,4,9,16}

       Filtered RDD (x!=1)  = {2,3,4}

代码举例  (计算平方)

val input = sc.parallelize(List(1,2,3,4))
val result = input.map(x => x*x)
println(result.collect().mkString(","))

如果我们希望对每个输出元素生成多个输出元素,实现该功能的操作叫做flatMap()

使用flatMap将行数据切分为单词

val lines = sc.parallelize(List("hello world","hi"))
val words = lines.flatMap(line => line.split(" "))
words.first()   //"返回hello"

map 和 flatmap的区别举例


RDD1 = {"coffee panda","happy panda","happiest panda party"}

tokenize("coffee panda") = List("coffee","panda")

RDD1.map(tokenize) ={["coffee","panda"],["happy","panda"],["happiest","panda","party"]}

RDD1.flatMap(tokenize) ={"coffee","panda","happy","panda","happiest","panda","party"}


伪集合操作


RDD中最常缺失的集合属性是元素的唯一性,因为常常有重复的元素。如果只要唯一的元素,我们可以使用RDD.distinct()转化操作来生成一个只包含不同元素的新RDD。


行动操作


最常见的行动操作reduce()。接收一个函数作为参数,这个函数要操作两个相同元素类型的RDD数据并返回一个同样类型的新元素。举一个简历(函数+)

val sum = rdd.reduce((x,y) => x + y) 

fold()函数的作用和reduce函数相同,但是需要提供一个初始值

rdd.fold(0)((x,y) => x+y)

4、持久化(缓存)


为了避免多次计算同一个RDD,可以让Spark对数据进行持久化,持久化存储一个RDD时,计算出RDD的节点会分别保存他们所求出的分区数据。如果一个有持久化的节点发生故障,Spark会在需要用到缓存的数据时重算丢失的数据分区。如果希望节点故障的情况下不会拖累我们的执行速度,也可以把数据备份到多个节点上。


使用persist()进行持久化操作

import org.apache.spark.storage.StorageLevel
val result = input.map(x => x * x)
result.persist(StorageLevel.DISK_ONLY)
println(result.count())
println(result.collect().mkString(","))

还有一个方法unpersit()可以手动把持久化的RDD从缓存中移除。

目录
打赏
0
0
0
0
16
分享
相关文章
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
134 0
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
177 0
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
203 0
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
148 0
Spark学习之编程进阶——累加器与广播(5)
Spark学习之编程进阶——累加器与广播(5) 1. Spark中两种类型的共享变量:累加器(accumulator)与广播变量(broadcast variable)。累加器对信息进行聚合,而广播变量用来高效分发较大的对象。 2. 共享变量是一种可以在Spark任务中使用的特殊类型的变量。 3. 累加器的用法: 通过在驱动器中调用SparkContex
1882 0
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
233 79
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
521 2
ClickHouse与大数据生态集成:Spark & Flink 实战
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
160 0
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
384 6
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问