Android 架构之 MVI 初级体 | Flow 替换 LiveData 重构数据链路(下)

简介: Android 架构之 MVI 初级体 | Flow 替换 LiveData 重构数据链路

lifecycleScope


刚才是在lifecycleScope收集新闻流的,它是一个和生命周期对象绑定的协程域:


public val LifecycleOwner.lifecycleScope: LifecycleCoroutineScope
    get() = lifecycle.coroutineScope
public val Lifecycle.coroutineScope: LifecycleCoroutineScope
    get() {
        while (true) {
            // 获取现有 lifecycleScope
            val existing = mInternalScopeRef.get() as LifecycleCoroutineScopeImpl?
            if (existing != null) {
                return existing
            }
            // 若没有现成的,则构建
            val newScope = LifecycleCoroutineScopeImpl(
                this,
                SupervisorJob() + Dispatchers.Main.immediate
            )
            // 并通过 cas + 自旋的方式保证存入 mInternalScopeRef
            if (mInternalScopeRef.compareAndSet(null, newScope)) {
                // 开始观察生命周期变化
                newScope.register()
                return newScope
            }
        }
    }


lifecycleScope 是一个LifecycleCoroutineScope实例,并以 Lifecycle 对象的扩展属性存在。之所以能这样做是因为 Lifecycle 开了后门:


public abstract class Lifecycle {
    // 后门,方便在类的外存取“附加值”
    AtomicReference<Object> mInternalScopeRef = new AtomicReference<>();
}


这种动态为类新增属性的方法,在 Kotlin 源码中很常见,详解可以点击读源码长知识 | 动态扩展类并绑定生命周期的新方式


新建 LifecycleCoroutineScope 实例后,会当场调用 register() 方法观察生命周期变化:


internal class LifecycleCoroutineScopeImpl(
    override val lifecycle: Lifecycle,
    override val coroutineContext: CoroutineContext
) : LifecycleCoroutineScope(), LifecycleEventObserver {
    fun register() {
        launch(Dispatchers.Main.immediate) {
            // 开始观察生命周期
            if (lifecycle.currentState >= Lifecycle.State.INITIALIZED) {
                lifecycle.addObserver(this@LifecycleCoroutineScopeImpl)
            } else {
                coroutineContext.cancel()
            }
        }
    }
    override fun onStateChanged(source: LifecycleOwner, event: Lifecycle.Event) {
        // 当生命周期为 DESTROYED 时,取消观察并取消协程中 job 的执行
        if (lifecycle.currentState <= Lifecycle.State.DESTROYED) {
            lifecycle.removeObserver(this)
            coroutineContext.cancel()
        }
    }
}


lifecycleScope.launch() 会立刻启动协程,并在生命周期 DESTROYED 时取消协程。


当 Activity 被另一个 Activity 遮挡时并不会 DESTROYED,所以此时若有流数据推过来还是可以更新到界面,并导致 crash。


flowWithLifecycle()


为此官方提供了flowWithLifecycle()


public fun <T> Flow<T>.flowWithLifecycle(
    lifecycle: Lifecycle,
    minActiveState: Lifecycle.State = Lifecycle.State.STARTED
): Flow<T> = callbackFlow {
    lifecycle.repeatOnLifecycle(minActiveState) {
        this@flowWithLifecycle.collect {
            send(it)
        }
    }
    close()
}


flowWithLifecycle() 内部生成了一个中间消费者callbackFlow,中间消费者会将上游数据转发给下游,不过是有条件的,只有当生命周期满足要求时才会转发。


其中的 repeatOnLifecycle() 是 Lifecycle 的扩展方法:


public suspend fun Lifecycle.repeatOnLifecycle(
    state: Lifecycle.State,
    block: suspend CoroutineScope.() -> Unit
) { ... }


repeatOnLifecycle() 会在新的协程执行 block,当且仅当生命周期至少达到 state 状态,若生命周期未达标,则会取消 block 执行,若再次达标,则再次执行。


让 Flow 感知生命周期的写法如下:只有当生命周期满足要求时,才收集上游并转发给下游,否则取消收集:


class NewsActivity : AppCompatActivity() {
    private val newsViewModel by lazy {
        ViewModelProvider(
            this,
            NewsViewModelFactory(NewsRepo(this))
        )[NewsViewModel::class.java]
    }
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        // 以感知生命周期的方式收集新闻流
        lifecycleScope.launch {
            repeatOnLifecycle(Lifecycle.State.STARTED) {
                newsViewModel.newsFlow(1, 8).collect { showNews(it) }
            }
        }
    }
}


嵌套回调出现了,看上去有点复杂。 还好有扩展方法,可以把这些细节隐藏起来:


// 用感知生命周期的方式收集流
fun <T> Flow<T>.collectIn(
    lifecycleOwner: LifecycleOwner,
    minActiveState: Lifecycle.State = Lifecycle.State.STARTED,
    action: (T) -> Unit
): Job = lifecycleOwner.lifecycleScope.launch {
    flowWithLifecycle(lifecycleOwner.lifecycle, minActiveState).collect(action)
}


然后就可以像这样在界面中收集新闻流:


class NewsActivity : AppCompatActivity() {
    private val newsViewModel by lazy {
        ViewModelProvider(
            this,
            NewsViewModelFactory(NewsRepo(this))
        )[NewsViewModel::class.java]
    }
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        newsViewModel.newsFlow(1, 8).collectIn(this) { showNews(it) }
    }
}


超简洁,把 LiveData 又比下去了~


这个方法需注意调用顺序,当不满足生命周期时,它只会取消订阅上游的数据,若下游还有另一流在生成数据,则无法感知生命周期。(封装的collectIn()保证了它是收集数据前的最后一个操作符)


避免重复触发冷流


按照上面的写法,还是有问题。当从新闻界面跳转到另一个界面再返回时,会重新查数据库,重新请求网络。。。


因为 Repository 提供的数据库和网络流都是“冷流”。冷流只有被收集之后才会生产数据,且冷流是没有地方存数据的,当数据从上游经过若干个中间消费者最后传递给订阅者,数据被展示在界面上,但整个数据链路上没有一个地方把数据存了下了。


又因为使用了repeatOnLifecycle(Lifecycle.State.STARTED),所以从另一个界面返回时,重新订阅了冷流,那它就毫不留情地开始重新生产数据。


SharedFlow


对于这种场景,解决方案是:让冷流共享,即多个订阅也不会触发冷流重新生产数据,最好能让冷流的数据被缓存,这样就能将最新的数据粘性地传递给新订阅者。


SharedFlow由此而生:


class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
    val newsFlow(type: Int, count: Int) =
        flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
            .flattenMerge()
            .transformWhile {
                emit(it.news)
                !it.abort
            }
            .map { NewsModel(it, false) }
            .flowOn(Dispatchers.IO)
            .catch {
                if (it is YourException)
                    emit(NewsModel(emptyList(),false,"network error,show old news"))
            }
            // 将流转换为 SharedFlow
            .shareIn(viewModelScope, SharingStarted.Lazily)
}


使用shareIn()将冷流转换成共享热流:


public fun <T> Flow<T>.shareIn(
    scope: CoroutineScope,
    started: SharingStarted,// 启动策略
    replay: Int = 0 // 缓存大小,默认不缓存(非粘性)
): SharedFlow<T> {...}


shareIn 是 Flow 的扩展方法:


  • started参数是启动策略,它决定了上游流的生命周期,
  • SharingStarted.Lazily适用于当前的场景,即当共享热流有订阅者时才启动上游流,上游流将一直存活着。


  • replay参数决定了缓存的大小,若为1,表示会缓存最新的1个值,当有新订阅者,会将缓存值分发给它,实现粘性效果(同 LiveData)。默认为0不缓存。


可以把 SharedFlow 想象成一个中间消费者,它收集上游流的数据并将其推送到热流中,然后将这些数据缓存并分享给所有的下游订阅者。


StateFlow


StateFlow 是一个特别的 SharedFlow,它是 Kotlin Flow 中更像 LiveData 的存在。因为:


  1. StateFlow 总是会缓存1个最新的数据,上游流产生新数据后就会覆盖旧值(LiveData 也是)。


  1. StateFlow 持有一个 value 字段,可通过stateFlow.value读取最新值(LiveData 也是)。


  1. StateFlow 是粘性的,会将缓存的最新值分发给新订阅者(LiveData 也是)。


  1. StateFlow 必须有一个初始值(LiveData 不是)。


  1. StateFlow 会过滤重复值,即新值和旧值相同时不更新。(LiveData 不是)。


可以使用stateIn()重写新闻流:


class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
    val newsFlow(type: Int, count: Int) =
        flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
            .flattenMerge()
            .transformWhile {
                emit(it.news)
                !it.abort
            }
            .map { NewsModel(it, false) }
            .flowOn(Dispatchers.IO)
            .catch {
                if (it is YourException)
                    emit(NewsModel(emptyList(),false,"network error,show old news"))
            }
            // 将流转换为 StateFlow
            .stateIn(viewModelScope, SharingStarted.Lazily, NewsModel(emptyList(), true))
}


stateIn() 中的第三个参数就是必须有的初始值,当 Repository 的原始数据流未生成数据时,初始值就已经推送给了订阅者,界面可以借此展示 loading。


若使用 shareIn(),则可以这样展示 loading:


class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
    val newsFlow(type: Int, count: Int) =
        flowOf(newsRepo.localNewsFlow, newsRepo.remoteNewsFlow(type, count))
            .flattenMerge()
            .transformWhile {
                emit(it.news)
                !it.abort
            }
            .map { NewsModel(it, false) }
            .flowOn(Dispatchers.IO)
            .onStart { emit(NewsModel(emptyList(), true)) }// 展示loading
            .catch {
                if (it is YourException)
                    emit(NewsModel(emptyList(),false,"network error,show old news"))
            }
            // 将流转换为 SharedFlow
            .shareIn(viewModelScope, SharingStarted.Lazily)
}


使用onStart(),它会在流被收集时立刻发生一个数据。


到底使用 StateFlow 还是 SharedFlow?得看场景:


  1. 当需在流以外的地方访问流的最新值,则用 StateFlow。


  1. 当需过滤重复值,则用 StateFlow(在 SharedFlow 上用 distinctUntilChanged() 效果相同)。


  1. 在需粘性的场景下,则用 StateFlow(将 SharedFlow 的 replay 置为1效果相同)。


我试图找到更多使用 StateFlow 的理由,但就像你看到的那样,大部分理由都不充分。只有第一个场景下,必用 StateFlow 不可。其他都可用 SharedFlow 代替,而且后者提供了更大的灵活性。


MVI 化


上面的代码已经比较接近 MVI 的模样了。


MVI 有三个关键词:响应式编程 + 单向数据流 + 唯一可信数据源。


关于 MVI 的剖析可以点击Android 架构最新进展 | MVI = 响应式编程 + 单向数据流 + 唯一可信数据源 - 掘金


现援引“单向数据流”图片如下:


image.png


界面产生的数据叫事件(意图)Intent,它流向 ViewModel,经加工后转换成 状态State供界面刷新。


sealed class FeedsIntent {
    // Feeds 初始化
    data class InitIntent(val type: Int, val count: Int) : FeedsIntent()
    // Feeds 加载更多
    data class MorePageIntent(val timestamp: Long, val count: Int) : FeedsIntent()
    // 删除某个帖子
    data class RemoveIntent(val id: Long) : FeedsIntent()
}


原本界面发起的事件是通过 ViewModel 的一个方法调用传递的。为了使用响应式编程形成数据流,得把函数调用用“数据”的形式包装起来。


事件产生自界面,所以事件流理所当然在界面组织:


class StateFlowActivity : AppCompatActivity() {
    private val refreshLayout: RefreshLayout
    // 在界面层组织事件流
    private val intents by lazy {
        merge(
            // 加载 Feeds 首页事件
            flowOf(FeedsIntent.InitIntent(1, 5))
            // 加载更多 Feeds 事件
            loadMoreFeedsFlow()
        )
    }
    private fun loadMoreFeedsFlow(): Flow<FeedsIntent> = callbackFlow {
        refreshLayout.setOnRefreshListener {
            trySend(FeedsIntent.MorePageIntent)
        }
        awaitClose()
    }
}


上述代码包含了两个事件,分别是加载首页和加载更多,它俩都被组织成流,并使用 merge 进行合流,merge 会将每个 Flow 中的数据合起来并发地转发到一个新的流上。


当流被订阅后,加载首页的事件会立刻产生并无条件的分发给下游,而加载更多事件需等待上拉动作发生时才会生成。


class StateFlowActivity : AppCompatActivity() {
    private val newsViewModel by lazy {
        ViewModelProvider(
            this,
            NewsViewModelFactory(NewsRepo(this))
        )[NewsViewModel::class.java]
    }
    private val intents by lazy {
        merge(
            flowOf(FeedsIntent.InitIntent(1, 5))
            loadMoreFeedsFlow()
        )
    }
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        // 订阅事件流,将事件传递给 ViewModel
        intents
            .onEach(newsViewModel::send) // .onEach { newsViewModel.send(it) } 效果一样
            .launchIn(lifecycleScope)
    }
}


在 onCreate() 订阅事件流,每产生一个事件都会调用 NewsViewModel.send() 方法将事件传递给 ViewModel。其中::用于将一个方法变为 lambda,方法就可以作为参数传给另一个方法,以简化代码。


NewsViewModel.send() 方法定义如下:


class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
    // 用于接收界面事件的共享流
    private val _feedsIntent = MutableSharedFlow<FeedsIntent>()
    // 界面事件唯一入口,向流中发送事件
    fun send(intent: FeedsIntent) {
        viewModelScope.launch { _feedsIntent.emit(intent) }
    }
}


现在界面事件已经以数据流Flow<FeedsIntent>的方式流入了 ViewModel,下一步就是在流上进行数据变换,即流入的是 Intent,流出的是 State。遂定义一个将Flow<FeedsIntent>转化成Flow<NewsState>的扩展方法:


class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
    // 将事件转换成状态(NewsState即是上面的NewsModel,换了个名字而已)
    private fun Flow<FeedsIntent>.toNewsStateFlow(): Flow<NewsState> = merge(
        // 加载首页事件处理
        filterIsInstance<FeedsIntent.InitIntent>()
            .flatMapConcat { it.toFetchInitPageFlow() },
        // 删除帖子事件处理
        filterIsInstance<FeedsIntent.RemoveIntent>()
            .flatMapConcat { ... },
        // 加载更多事件处理
        filterIsInstance<FeedsIntent.MorePageIntent>()
            .flatMapConcat { ... }
    )
}


每一个上游的FeedsIntent都会在这里被转换成一个Flow<NewsState>,就形成了Flow<Flow<NewsState>>这样的结构,然后用 flatMapConcat() 将其展平变成Flow<NewsState>


由于有多种事件,遂使用 filterIsInstance() 按事件类型过滤,实现了事件分流,即是用流的方式写 if-else。


其中toFetchInitPageFlow()描述了如何将加载首页事件转换成Flow<NewsState>


// NewsViewModel.kt
private fun FeedsIntent.InitIntent.toFetchInitPageFlow() =
    flowOf(
        newsRepo.localNewsOneShotFlow,
        newsRepo.remoteNewsFlow(this.type, this.count)
    )
        .flattenMerge()
        .transformWhile {
            emit(it.news)
            !it.abort
        }
        .map { NewsState(it, false) }
        .onStart { emit(NewsState(emptyList(), true)) }
        .catch {
            if (it is SSLHandshakeException)
                emit(
                    NewsState(
                        emptyList(),
                        false,
                        "network error,show old news"
                    )
                )
        }


转化的方法即是拉取数据库以及网络(就是把之前定义好的数据库网络合流拿过来)。


是时候把事件流以及它的变换操作合起来了:


class NewsViewModel(private val newsRepo: NewsRepo) : ViewModel() {
    // 事件流
    private val _feedsIntent = MutableSharedFlow<FeedsIntent>()
    // 状态流
    val newsState =
        _feedsIntent
            .toNewsStateFlow() // 将事件流转换成状态流
            .flowOn(Dispatchers.IO) // 异步地进行变换操作
            .shareIn(viewModelScope, SharingStarted.Eagerly) // 将流转换成共享流以供界面订阅
}


最后界面观察状态流:


class StateFlowActivity : AppCompatActivity() {
    private val newsViewModel by lazy {
        ViewModelProvider(
            this,
            NewsViewModelFactory(NewsRepo(this))
        )[NewsViewModel::class.java]
    }
    // 组织界面事件
    private val intents by lazy {
        merge(
            flowOf(FeedsIntent.InitIntent(1, 5))
            loadMoreFeedsFlow()
        )
    }
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        // 数据流起点:发送事件
        intents
            .onEach(newsViewModel::send)
            .launchIn(lifecycleScope)
        // 数据流终点:消费状态
        newsViewModel.newsState
            .collectIn(this) { showNews(it) }
    }
    // 渲染界面
    private fun showNews(newsModel: NewsState) {
        when {
            newsModel.loading -> {
                showLoading()
            }
            newsModel.errorMessage.isEmpty() -> {
                dismissLoading()
                newsAdapter.news = newsModel.news
                rvNews.adapter = newsAdapter
            }
            else -> {
                dismissLoading()
                tv.text = newsModel.errorMessage
            }
        }
    }
}


(这里的 MVI 是一个半成品,比如该代码结构就无法实现“上拉加载更多”这个需求,后续文章会在此基础上做重构,欢迎持续关注~)


LiveData vs Flow


LiveData 面试题库、解答、源码分析 这里详尽地分析了 LiveData 的原理及使用过程中的坑。


对于承载数据来说,Kotlin Flow 相较于 LiveData 只能说有过之而无不及:


  1. LiveData 不能方便地支持异步化。


  1. LiveData 粘性问题的解决方案虽然很多,但用起来都很变扭。


  1. LiveData 可能发生数据丢失的情况。


  1. LiveData 的数据变换能力远远不如 Flow。


  1. LiveData 多数据源的合流能力远远不如 Flow。


除此之外,Flow 还有一点非常吸引人,那就是 简洁,Flow 可以用及其轻松简单的方式实现复杂的效果,代码的复杂度斗降,可读性斗升。更重要的是,这是大势所趋,还在犹豫什么~


参考


Substituting LiveData: StateFlow or SharedFlow? | ProAndroidDev


A safer way to collect flows from Android UIs | by Manuel Vivo | Android Developers | Medium


Room  Flow. Coroutines support in Room has been… | by Florina Muntenescu | Android Developers | Medium


kotlinx.coroutines/flow.md at …


Things to know about Flow’s shareIn and stateIn operators | by Manuel Vivo | Android Developers | Medium


Migrating from LiveData to Kotlin’s Flow | by Jose Alcérreca | Android Developers | Medium


Exceptions in Kotlin Flows. Kotlin Flow can complete normally or… | by Roman Elizarov | Medium


Flow.transformWhile operator · Issue #2065 · Kotlin/kotlinx.cor…


Merging kotlin flows - Stack Overflow


JakeWharton/retrofit2-kotlin-coroutines-adapter: A Retrofit 2 adapter for Kotlin coroutine's Deferred type. (github.com)


Model-View-Intent Design Pattern on Android - xizzhu


推荐阅读


如何“好好利用多态”写出又臭又长又难以维护的代码?


Kotlin 异步 | Flow 限流的应用场景及原理


Kotlin 异步 | Flow 应用场景及原理


Kotlin 协程 | CoroutineContext 为什么要设计成 indexed set?(一)


Kotlin 源码 | 降低代码复杂度的法宝


Kotlin 基础 | 望文生义的 Kotlin 集合操作


Kotlin 基础 | 拒绝语法噪音


Kotlin 基础 | 委托及其应用


Kotlin 进阶 | 不变型、协变、逆变


Kotlin 实战 | 用语法糖干掉形状 xml 文件


我是怎么把业务代码越写越复杂的 | MVP - MVVM - Clean Architecture


Android 架构之 MVI 雏形 | 响应式编程 + 单向数据流 + 唯一可信数据源


Android 架构之 MVI 初级体 | Flow 替换 LiveData 重构数据链路


Android 架构之 MVI 完全体 | 重新审视 MVVM 之殇(PartialChange & Reducer)


目录
相关文章
|
8天前
|
IDE Android开发 iOS开发
深入解析Android与iOS的系统架构及开发环境差异
本文旨在探讨Android和iOS两大主流移动操作系统在系统架构、开发环境和用户体验方面的显著差异。通过对比分析,我们将揭示这两种系统在设计理念、技术实现以及市场策略上的不同路径,帮助开发者更好地理解其特点,从而做出更合适的开发决策。
36 2
|
9天前
|
监控 Android开发 iOS开发
深入探索安卓与iOS的系统架构差异:理解两大移动平台的技术根基在移动技术日新月异的今天,安卓和iOS作为市场上最为流行的两个操作系统,各自拥有独特的技术特性和庞大的用户基础。本文将深入探讨这两个平台的系统架构差异,揭示它们如何支撑起各自的生态系统,并影响着全球数亿用户的使用体验。
本文通过对比分析安卓和iOS的系统架构,揭示了这两个平台在设计理念、安全性、用户体验和技术生态上的根本区别。不同于常规的技术综述,本文以深入浅出的方式,带领读者理解这些差异是如何影响应用开发、用户选择和市场趋势的。通过梳理历史脉络和未来展望,本文旨在为开发者、用户以及行业分析师提供有价值的见解,帮助大家更好地把握移动技术发展的脉络。
|
15天前
|
搜索推荐 Linux Android开发
深入解析安卓与iOS系统架构设计差异
本文旨在探讨Android和iOS两大主流操作系统在架构设计上的根本差异。通过分析两种系统的设计理念、核心组件以及实际应用表现,揭示它们如何反映不同的开发哲学和用户体验策略。我们将从系统层级结构、内存管理机制、用户界面设计三个方面入手,逐一对比Android的开放性和灵活性如何与其对手iOS的封闭性和一致性相互辉映。
|
2月前
|
SQL 分布式计算 大数据
Android项目架构设计问题之平衡技术选型与业务需求之间的关系如何解决
Android项目架构设计问题之平衡技术选型与业务需求之间的关系如何解决
36 0
|
2月前
|
开发工具 Android开发
Android项目架构设计问题之SDK内部减少每次回调时的冗余判断逻辑如何解决
Android项目架构设计问题之SDK内部减少每次回调时的冗余判断逻辑如何解决
21 0
|
2月前
|
开发工具 Android开发
Android项目架构设计问题之外部客户方便地设置回调如何解决
Android项目架构设计问题之外部客户方便地设置回调如何解决
19 0
|
2月前
|
Java API 开发工具
Android项目架构设计问题之为SDK添加新的回调支持如何解决
Android项目架构设计问题之为SDK添加新的回调支持如何解决
18 0
|
8天前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
8天前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
2月前
|
Kubernetes Cloud Native Docker
云原生之旅:从容器到微服务的架构演变
【8月更文挑战第29天】在数字化时代的浪潮下,云原生技术以其灵活性、可扩展性和弹性管理成为企业数字化转型的关键。本文将通过浅显易懂的语言和生动的比喻,带领读者了解云原生的基本概念,探索容器化技术的奥秘,并深入微服务架构的世界。我们将一起见证代码如何转化为现实中的服务,实现快速迭代和高效部署。无论你是初学者还是有经验的开发者,这篇文章都会为你打开一扇通往云原生世界的大门。
下一篇
无影云桌面