【数据湖仓架构】数据湖和仓库:Databricks 和 Snowflake

简介: 【数据湖仓架构】数据湖和仓库:Databricks 和 Snowflake

是时候将数据分析迁移到云端了。我们比较了 Databricks 和 Snowflake,以评估基于数据湖和基于数据仓库的解决方案之间的差异。


在这篇文章中,我们将介绍基于数据仓库和基于数据湖的云大数据解决方案之间的区别。我们通过比较多种云环境中可用的两种流行技术来做到这一点:Databricks 和 Snowflake。

正如我们在上一篇文章中了解到的,数据分析平台可以分为多个阶段。上面,我们可以看到一张图片,大致了解了管道中 Snowflake 和 Databricks 的角色。在这里,我们可以将工具分类为处理(绿色)或存储(蓝色) Databricks 是一种处理工具,而 Snowflake 涵盖了处理和存储。另一方面,Delta Lake 是与 Databricks 相关的存储解决方案。我们稍后会介绍。

根据上一篇给出的定义,我们可以粗略的说Databricks是一个基于数据湖的工具,而Snowflake是一个基于数据仓库的工具。现在让我们更深入地研究这些工具。

Databricks 是具有数据仓库功能的数据湖工具

Databricks 是一个基于 Apache Spark 的处理工具,它为编程环境提供高度可自动扩展的计算能力。Apache Spark 是基于编码的大数据处理的事实上的标准编程框架。

Databricks 计费本质上是基于使用情况的。您为使用的计算资源付费,仅此而已。原则上,Databricks 特别适合在管道的早期阶段处理数据,尤其是在青铜层和银层之间它也可用于准备黄金层数据,但在为报告工具等提供数据方面并不是最好的。


最近,Databricks 已将其能力大幅扩展至传统数据仓库的方向。Databricks 提供了现成的 SQL 查询接口和轻量级的可视化层。此外,Databricks 提供了一种数据库类型的表结构。数据库类型功能是专门使用 Delta 文件格式开发的

Delta 文件格式是一种将数据库优势带入数据湖世界的方法。除其他外,该格式提供数据模式版本控制和数据库类型 ACID 事务。根据数据湖范式,文件格式本身是开放的,任何人都可以免费使用。

基于 Delta 格式和 Databricks 工具,该公司正在尝试为数据湖和数据仓库混合方法传播一种新颖的“Data Lakehouse”范式概念。

Snowflake 是一个借鉴数据湖范式的可扩展数据仓库

Snowflake 是专为云环境开发的可扩展数据仓库解决方案。 Snowflake 以专有文件格式将数据存储在云存储中。因此,根据数据仓库范式,数据只能通过 Snowflake 获得。除了计算资源外,您还需要为雪花文件格式的数据存储付费。但是,您还可以使用典型的数据仓库功能,例如可用的精细权限管理

几年前,Snowflake 通过提供高度分布式和可扩展的计算能力扰乱了数据仓库市场。这是通过在数据仓库架构中完全分离存储和处理层来完成的。传统上,这一直是大数据世界中数据仓库解决方案的主要障碍。这是 Snowflake 向数据湖范式方向扩展其解决方案的方式之一。如今,它提供了用于实时数据摄取的高效工具等。


说 Snowflake 的成功给 Amazon Redshift 和 Azure Data Warehouse 开发带来了危机,这可能并不为过。后两种数据仓库解决方案的可扩展性明显受到更多限制:如果您想避免高额费用,则需要在小存储容量或慢处理之间进行选择。很多时候,很难找到合适的组合。因此,您通常会为您没有实际使用的储备资源支付大量资金。尽管如此,这两款产品都已采取措施解决这个问题。

结论:Databricks 和 Snowflake

在这篇文章中,我们讨论了两个非常流行的多云数据分析产品:Databricks 和 Snowflake。正如上一篇博文中所讨论的,我们从它们的背景范式的角度专门研究了它们。

我们注意到 Snowflake 在数据仓库领域有基础,而 Databricks 更面向数据湖。然而,两者都将其范围扩展到了其范式的典型限制之外。


这两种工具绝对可以单独使用来满足数据分析平台的需求。 Databricks 可以直接从存储中提供数据或将数据导出到数据集市。不需要单独的数据仓库另一方面,可以将数据直接摄取到 Snowflake 进行处理、建模和提供。以我的经验,纯Snowflake解决方案更常见,可能是因为 Databricks 已经出现很久了。

然而,正如在上一篇文章中提到的,在一个平台上同时使用这两种产品可能是个好主意。图中描述了这种解决方案的故障,Databricks 读取和处理原始数据,Snowflake 负责管道的发布端。同样重要的是要注意 Databricks 和 Snowflake 正在合作以更好地集成产品。

总而言之,混合解决方案的未来似乎更加光明。


原文https://architect.pub/data-lakes-and-warehouses-databricks-and-snowflake

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
6月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
6月前
|
SQL 存储 运维
别让运维数据“各过各的”:聊聊数据湖怎么搭,才能不成“沼泽”
别让运维数据“各过各的”:聊聊数据湖怎么搭,才能不成“沼泽”
231 0
|
10月前
|
SQL 缓存 分布式计算
vivo 湖仓架构的性能提升之旅
聚焦 vivo 大数据多维分析面临的挑战、StarRocks 落地方案及应用收益。 在 **即席分析** 场景,StarRocks 使用占比达 70%,查询速度提升 3 倍,P50 耗时从 63.77 秒缩短至 22.30 秒,查询成功率接近 98%。 在 **敏捷 BI** 领域,StarRocks 已完成 25% 切换,月均查询成功数超 25 万,P90 查询时长缩短至 5 秒,相比 Presto 提升 75%。 在 **研发工具平台** 方面,StarRocks 支持准实时数据查询,数据可见性缩短至 3 分钟,查询加速使 P95 延迟降至 400 毫秒,开发效率提升 30%。
vivo 湖仓架构的性能提升之旅
|
4月前
|
存储 机器学习/深度学习 数据采集
一文讲透数据仓库、数据湖、数据海的区别
企业常因数据架构不清导致报表延迟、数据矛盾、利用困难。核心解法是构建数据仓库(高效分析)、数据湖(灵活存储原始数据)和数据海(全局集成)。三者各有适用场景,需根据业务需求选择,常共存互补,助力数据驱动决策。
一文讲透数据仓库、数据湖、数据海的区别
|
4月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
478 0
|
5月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。
|
9月前
|
SQL 分布式数据库 Apache
网易游戏 x Apache Doris:湖仓一体架构演进之路
网易游戏 Apache Doris 集群超 20 个 ,总节点数百个,已对接内部 200+ 项目,日均查询量超过 1500 万,总存储数据量 PB 级别。
875 3
网易游戏 x Apache Doris:湖仓一体架构演进之路
|
11月前
|
SQL 消息中间件 Kafka
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
1593 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
11月前
|
SQL 运维 BI
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
650 3
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
|
10月前
|
SQL 消息中间件 Serverless
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
338 4

相关产品

  • Databricks 数据洞察