二叉树专题(7)
112. 路径总和 Path Sum
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。
示例 3:
输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。
提示:
树中节点的数目在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
代码:
package main import ( "fmt" ) const null = -1 << 31 type TreeNode struct { Val int Left *TreeNode Right *TreeNode } func hasPathSum(root *TreeNode, targetSum int) bool { sum := func(arr []int) int { res := 0 for i := 0; i < len(arr); i++ { res += arr[i] } return res } for _, path := range binaryTreePaths(root) { if sum(path) == targetSum { return true } } return false } func binaryTreePaths(root *TreeNode) [][]int { res := [][]int{} if root == nil { return res } if root.Left == nil && root.Right == nil { return [][]int{{root.Val}} } leftPaths := binaryTreePaths(root.Left) rightPaths := binaryTreePaths(root.Right) paths := make([][]int, 0) for _, path := range leftPaths { paths = append(paths, append([]int{root.Val}, path...)) } for _, path := range rightPaths { paths = append(paths, append([]int{root.Val}, path...)) } return paths } func buildTree(nums []int) *TreeNode { if len(nums) == 0 { return nil } root := &TreeNode{Val: nums[0]} Queue := []*TreeNode{root} idx := 1 for idx < len(nums) { node := Queue[0] Queue = Queue[1:] if nums[idx] != null { node.Left = &TreeNode{Val: nums[idx]} Queue = append(Queue, node.Left) } idx++ if idx < len(nums) && nums[idx] != null { node.Right = &TreeNode{Val: nums[idx]} Queue = append(Queue, node.Right) } idx++ } return root } func main() { nums := []int{5, 4, 8, 11, null, 13, 4, 7, 2, null, null, 5, 1} root := buildTree(nums) fmt.Println(hasPathSum(root, 22)) nums2 := []int{1, 2, 3} root = buildTree(nums2) fmt.Println(hasPathSum(root, 5)) nums3 := []int{} root = buildTree(nums3) fmt.Println(hasPathSum(root, 0)) }
输出:
true
false
false
113. 路径总和 II Path Sum II
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:[]
示例 3:
输入:root = [1,2], targetSum = 0
输出:[]
提示:
- 树中节点总数在范围
[0, 5000]
内 -1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
代码1:
package main import ( "fmt" ) const null = -1 << 31 type TreeNode struct { Val int Left *TreeNode Right *TreeNode } func pathSum(root *TreeNode, targetSum int) [][]int { res := [][]int{} sum := func(arr []int) int { res := 0 for i := 0; i < len(arr); i++ { res += arr[i] } return res } for _, path := range binaryTreePaths(root) { if sum(path) == targetSum { res = append(res, append([]int{}, path...)) } } return res } func binaryTreePaths(root *TreeNode) [][]int { res := [][]int{} if root == nil { return res } if root.Left == nil && root.Right == nil { return [][]int{{root.Val}} } leftPaths := binaryTreePaths(root.Left) rightPaths := binaryTreePaths(root.Right) paths := make([][]int, 0) for _, path := range leftPaths { paths = append(paths, append([]int{root.Val}, path...)) } for _, path := range rightPaths { paths = append(paths, append([]int{root.Val}, path...)) } return paths } func buildTree(nums []int) *TreeNode { if len(nums) == 0 { return nil } root := &TreeNode{Val: nums[0]} Queue := []*TreeNode{root} idx := 1 for idx < len(nums) { node := Queue[0] Queue = Queue[1:] if nums[idx] != null { node.Left = &TreeNode{Val: nums[idx]} Queue = append(Queue, node.Left) } idx++ if idx < len(nums) && nums[idx] != null { node.Right = &TreeNode{Val: nums[idx]} Queue = append(Queue, node.Right) } idx++ } return root } func main() { nums := []int{5, 4, 8, 11, null, 13, 4, 7, 2, null, null, 5, 1} root := buildTree(nums) fmt.Println(pathSum(root, 22)) nums2 := []int{1, 2, 3} root = buildTree(nums2) fmt.Println(pathSum(root, 5)) nums3 := []int{1, 2} root = buildTree(nums3) fmt.Println(pathSum(root, 0)) }
输出:
[[5 4 11 2] [5 8 4 5]]
[]
[]
以上两题都用到了遍历出所有路径的函数 func binaryTreePaths(root *TreeNode) [][]int
package main import ( "fmt" ) const null = -1 << 31 type TreeNode struct { Val int Left *TreeNode Right *TreeNode } func binaryTreePaths(root *TreeNode) [][]int { res := [][]int{} if root == nil { return res } if root.Left == nil && root.Right == nil { return [][]int{{root.Val}} } leftPaths := binaryTreePaths(root.Left) rightPaths := binaryTreePaths(root.Right) paths := make([][]int, 0) for _, path := range leftPaths { paths = append(paths, append([]int{root.Val}, path...)) } for _, path := range rightPaths { paths = append(paths, append([]int{root.Val}, path...)) } return paths } func buildTree(nums []int) *TreeNode { if len(nums) == 0 { return nil } root := &TreeNode{Val: nums[0]} Queue := []*TreeNode{root} idx := 1 for idx < len(nums) { node := Queue[0] Queue = Queue[1:] if nums[idx] != null { node.Left = &TreeNode{Val: nums[idx]} Queue = append(Queue, node.Left) } idx++ if idx < len(nums) && nums[idx] != null { node.Right = &TreeNode{Val: nums[idx]} Queue = append(Queue, node.Right) } idx++ } return root } func main() { nums := []int{5, 4, 8, 11, null, 13, 4, 7, 2, null, null, 5, 1} root := buildTree(nums) fmt.Println(binaryTreePaths(root)) }
输出:
[[5 4 11 7] [5 4 11 2] [5 8 13] [5 8 4 5] [5 8 4 1]]
方法2: 递归 DFS
package main import "fmt" const null = -1 << 31 // 用Math.MinInt32来表示空节点 type TreeNode struct { Val int Left *TreeNode Right *TreeNode } func buildTree(nums []int) *TreeNode { if len(nums) == 0 { return nil } root := &TreeNode{Val: nums[0]} Queue := []*TreeNode{root} idx := 1 for idx < len(nums) { node := Queue[0] Queue = Queue[1:] if nums[idx] != null { node.Left = &TreeNode{Val: nums[idx]} Queue = append(Queue, node.Left) } idx++ if idx < len(nums) && nums[idx] != null { node.Right = &TreeNode{Val: nums[idx]} Queue = append(Queue, node.Right) } idx++ } return root } func pathSum(root *TreeNode, targetSum int) [][]int { result := [][]int{} if root == nil { return result } path := []int{} dfs(root, targetSum, path, &result) return result } func dfs(node *TreeNode, targetSum int, path []int, res *[][]int) { if node == nil { return } path = append(path, node.Val) if node.Left == nil && node.Right == nil && node.Val == targetSum { temp := make([]int, len(path)) copy(temp, path) *res = append(*res, temp) return } dfs(node.Left, targetSum-node.Val, path, res) dfs(node.Right, targetSum-node.Val, path, res) path = path[:len(path)-1] } func main() { nums := []int{5, 4, 8, 11, null, 13, 4, 7, 2, null, null, 5, 1} root := buildTree(nums) fmt.Println(pathSum(root, 22)) nums2 := []int{1, 2, 3} root = buildTree(nums2) fmt.Println(pathSum(root, 5)) nums3 := []int{1, 2} root = buildTree(nums3) fmt.Println(pathSum(root, 0)) }
114. 二叉树展开为链表 Flatten Binary Tree to Linked-list
给你二叉树的根结点 root ,请你将它展开为一个单链表:
展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。
展开后的单链表应该与二叉树 先序遍历 顺序相同。
示例 1:
输入:root = [1,2,5,3,4,null,6]
输出:[1,null,2,null,3,null,4,null,5,null,6]
示例 2:
输入:root = []
输出:[]
示例 3:
输入:root = [0]
输出:[0]
提示:
树中结点数在范围 [0, 2000] 内
-100 <= Node.val <= 100
进阶:你可以使用原地算法(O(1) 额外空间)展开这棵树吗?
代码:
func flatten(root *TreeNode) { list, cur := []int{}, &TreeNode{} preorder(root, &list) cur = root for i := 1; i < len(list); i++ { cur.Left = nil cur.Right = &TreeNode{Val: list[i], Left: nil, Right: nil} cur = cur.Right } return } func flatten1(root *TreeNode) { if root == nil || (root.Left == nil && root.Right == nil) { return } flatten(root.Left) flatten(root.Right) currRight := root.Right root.Right = root.Left root.Left = nil for root.Right != nil { root = root.Right } root.Right = currRight }