Yolov5模型训练之添加小目标检测层

简介: 适用于目标检测.

在任意一帧图像中,距离实验相机越近的目标在图像中像素比越高,此类目标在检测过程中可以提取到的特征信息很丰富且噪声较低,检测结果比较准确相反,距离实验相机较远的目标在图像中像素比较低,可供提取的特征信息很少、噪声大,对检测结果有很大的影响。模型中的原始检测层数量为3,原始的图像尺寸大小为640×640,本文在实验过程中分别对原始图像在81632倍三个尺度下进行下采样操作以此来得到不同尺度下的特征图,对应的特征图的尺寸大小依次为20×2040×4080×80,对应检测32×3216×168×8的像素的目标   


      原先的YOLOv5模型利用不同尺寸大小的特征图对大、中、小三种尺寸目标进行检测和识别,但是三种尺度的检测层对远距离的目标和重叠度高的目标会出现检测不到的情况。因此,针对这个问题,本文考虑在预测部分添加一层160×160度的小目标检测层进行远距离小目标的检测,结合其余三个尺度的检测层,用四个不同感受野的检测层来提高对小目标检测精度,从而实现模型对尺度的包容性和可扩展性。


具体代码实现如下:

# parametersnc: 13# number of classesdepth_multiple: 0.33# model depth multiplewidth_multiple: 0.50# layer channel multipleanchors:
- [5,6, 8,14, 15,11]
- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32backbone:
# [from, number, module, args]  [[-1, 1, Focus, [64, 3]],  # 0-P1/2   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9  ]
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4   [-1, 3, C3, [512, False]],  # 13   [-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3   [-1, 3, C3, [512, False]],  # 17 (P3/8-small)   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 2], 1, Concat, [1]],  # cat backbone P3   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 18], 1, Concat, [1]],  # cat head P4   [-1, 3, C3, [256, False]],  # 20 (P4/16-medium)   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],
   [-1, 3, C3, [512, False]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)  ]
相关文章
|
机器学习/深度学习 数据可视化 PyTorch
YOLOv5的Tricks | 【Trick11】在线模型训练可视化工具wandb(Weights & Biases)
YOLOv5的Tricks | 【Trick11】在线模型训练可视化工具wandb(Weights & Biases)
1323 0
YOLOv5的Tricks | 【Trick11】在线模型训练可视化工具wandb(Weights & Biases)
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
117 4
|
16天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
40 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
52 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
105 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
2月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
42 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
39 0
|
3月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)