使用sklearn.pipeline.Pipeline 快速完成房价预测

简介: 使用sklearn.pipeline.Pipeline 快速完成房价预测

简介


许多数据科学家在没有管道的情况下拼凑模型,但管道有一些重要的好处。其中包括

  • 更简洁的代码:在预处理的每个步骤中计算数据可能会变得混乱。使用管道,您将不需要在每个步骤手动跟踪您的训练和验证数据。
  • 更少的bug:错误应用步骤或忘记预处理步骤的机会更少。
  • 更容易生产:将模型从原型转换为可大规模部署的东西可能非常困难。我们不会在这里讨论许多相关的问题,但管道可以提供帮助。
  • 模型验证的更多选项:您将在下一个教程中看到一个示例,它涵盖了交叉验证。


例子


我们继续使用Melbourne Housing 数据集.

我们将不关注数据加载步骤。相反,您可以想象自己已经有了 X_train, X_valid, y_train, 和 y_valid. 中的训练和验证数据。


import pandas as pd
from sklearn.model_selection import train_test_split
# Read the data
data = pd.read_csv('melbourne-housing-snapshot/melb_data.csv')
# Separate target from predictors
y = data.Price
X = data.drop(['Price'], axis=1)
# Divide data into training and validation subsets
X_train_full, X_valid_full, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2,
                                                                random_state=0)
# "Cardinality" means the number of unique values in a column
# Select categorical columns with relatively low cardinality (convenient but arbitrary)
categorical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].nunique() < 10 and 
                        X_train_full[cname].dtype == "object"]
# Select numerical columns
numerical_cols = [cname for cname in X_train_full.columns if X_train_full[cname].dtype in ['int64', 'float64']]
# Keep selected columns only
my_cols = categorical_cols + numerical_cols
X_train = X_train_full[my_cols].copy()
X_valid = X_valid_full[my_cols].copy()

我们用下面的head()方法查看一下训练数据。注意,数据既包含类别数据,也包含缺少值的列。使用管道,可以很容易地处理这两个问题!


X_train.head()

    .dataframe tbody tr th:only-of-type {         vertical-align: middle;     } .dataframe tbody tr th {     vertical-align: top; } .dataframe thead th {     text-align: right; }

Type Method Regionname Rooms Distance Postcode Bedroom2 Bathroom Car Landsize BuildingArea YearBuilt Lattitude Longtitude Propertycount
12167 u S Southern Metropolitan 1 5.0 3182.0 1.0 1.0 1.0 0.0 NaN 1940.0 -37.85984 144.9867 13240.0
6524 h SA Western Metropolitan 2 8.0 3016.0 2.0 2.0 1.0 193.0 NaN NaN -37.85800 144.9005 6380.0
8413 h S Western Metropolitan 3 12.6 3020.0 3.0 1.0 1.0 555.0 NaN NaN -37.79880 144.8220 3755.0
2919 u SP Northern Metropolitan 3 13.0 3046.0 3.0 1.0 1.0 265.0 NaN 1995.0 -37.70830 144.9158 8870.0
6043 h S Western Metropolitan 3 13.3 3020.0 3.0 1.0 2.0 673.0 673.0 1970.0 -37.76230 144.8272 4217.0

分三步构建完整的管道。


步骤1:定义预处理


与管道将预处理和建模步骤捆绑在一起的方式类似,我们使用“ColumnTransformer”类将不同的预处理步骤捆绑在一起。下面的代码

  • 数值数据中计算缺失值,并且
  • 计算缺失值并对分类数据应用one-hot编码。


from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
# Preprocessing for numerical data
numerical_transformer = SimpleImputer(strategy='constant')
# Preprocessing for categorical data
categorical_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
    ('onehot', OneHotEncoder(handle_unknown='ignore'))
])
# Bundle preprocessing for numerical and categorical data
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numerical_transformer, numerical_cols),
        ('cat', categorical_transformer, categorical_cols)
    ])


步骤3:定义模型


接下来,我们定义一个随机森林模型RandomForestRegressor


from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(n_estimators=100, random_state=0)


步骤3:创建和评估管道


最后,我们使用 Pipeline类,定义一个将预处理和建模步骤捆绑在一起的管道。有几件重要的事情需要注意:

  • 使用管道,我们预处理训练数据并在一行代码中拟合模型。(相比之下,如果没有管道,我们必须在单独的步骤中进行imputation, one-hot编码和模型训练。如果我们必须同时处理数值变量和分类变量,这会变得特别混乱!)
  • 使用管道,我们将' X_valid '中未处理的特征提供给' predict() '命令,并且管道在生成预测之前自动预处理特征。(但是,如果没有管道,我们必须记住在进行预测之前对验证数据进行预处理。)


from sklearn.metrics import mean_absolute_error
# Bundle preprocessing and modeling code in a pipeline
my_pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                              ('model', model)
                             ])
# Preprocessing of training data, fit model 
my_pipeline.fit(X_train, y_train)
# Preprocessing of validation data, get predictions
preds = my_pipeline.predict(X_valid)
# Evaluate the model
score = mean_absolute_error(y_valid, preds)
print('MAE:', score)


MAE: 160679.18917034855


结论


管道对于清理机器学习代码和避免错误很有价值,对于具有复杂数据预处理的工作流尤其有用。

image.png



目录
相关文章
|
6月前
Sklearn库中的决策树模型有哪些主要参数?
Sklearn的决策树模型参数包括:criterion(默认&quot;gini&quot;)用于特征选择,splitter(默认&quot;best&quot;)决定划分点,max_depth限制树的最大深度,min_samples_split设置内部节点划分的最小样本数,min_samples_leaf定义叶子节点最少样本数,max_features(默认&quot;auto&quot;)控制搜索最优划分时的特征数量,random_state设定随机数种子,max_leaf_nodes限制最大叶子节点数,以及min_impurity_decrease阻止不纯度减少不足的节点划分。
79 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例
如何使用TensorFlow和Keras实现条件生成对抗网络(CGAN)并以MNIST和Fashion MNIST数据集为例进行演示。
49 3
|
5月前
|
机器学习/深度学习 数据处理 计算机视觉
机器学习- Sklearn (交叉验证和Pipeline)
机器学习- Sklearn (交叉验证和Pipeline)
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch中如何使用DataLoader对数据集进行批训练
Pytorch中如何使用DataLoader对数据集进行批训练
135 0
|
机器学习/深度学习 算法 数据挖掘
浅析sklearn中的Pipeline
为什么需要Pipeline? 在日常机器学习项目开发中,可能会经过数据缩放、特征组合以及模型学习拟合等过程;并且,当问题更为复杂时,所应用到的算法以及模型则较为繁杂。
|
机器学习/深度学习 数据采集 资源调度
浅析sklearn中的数据预处理方法
在日常的机器学习开发过程中,基本的机器学习过程如下图所示。
|
机器学习/深度学习 数据中心
基于Fashion-MNIST数据集的模型剪枝(下)
1. 介绍 1.1 背景介绍 目前在深度学习中存在一些困境,对于移动是设备来说,主要是算不好;穿戴设备算不来;数据中心,大多数人又算不起 。这就是做模型做压缩与加速的初衷。
139 0
基于Fashion-MNIST数据集的模型剪枝(下)
|
机器学习/深度学习 存储 算法
基于Fashion-MNIST数据集的模型剪枝(上)
1. 介绍 1.1 背景介绍 目前在深度学习中存在一些困境,对于移动是设备来说,主要是算不好;穿戴设备算不来;数据中心,大多数人又算不起 。这就是做模型做压缩与加速的初衷。
476 0
基于Fashion-MNIST数据集的模型剪枝(上)
ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测
ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测
ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测
|
数据采集 PyTorch 算法框架/工具
使用PyG (PyTorch Geometric) 实现同质图transductive链路预测任务
使用PyG (PyTorch Geometric) 实现同质图transductive链路预测任务