基于PaddleNLP的端到端智能家居对话意图识别(上)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 基于PaddleNLP的端到端智能家居对话意图识别

一、基于PaddleNLP的端到端智能家居对话意图识别


0.摘要


对智能设备的对话数据进行整理,然后基于预训练模型微调的二分类/多分类端到端应用方案,使用ernie-3.0-tiny-medium-v2-zh模型,进行训练、评估、模型导出,以及预测,并提交结果。


1.比赛介绍


意图识别是指分析用户的核心需求,输出与查询输入最相关的信息,例如在搜索中要找电影、查快递、市政办公等需求,这些需求在底层的检索策略会有很大的不同,错误的识别几乎可以确定找不到能满足用户需求的内容,导致产生非常差的用户体验;在对话过程中要准确理解对方所想表达的意思,这是具有很大挑战性的任务。

意图识别的准确性能在很大程度上影响着搜索的准确性和对话系统的智能性,在本赛题中我们需要选手对中文对话进行意图识别。


2.数据集介绍


  • 训练数据:大约1.2万条中文对话
  • 测试数据:3000条无标注对话


3.提交样式


评分使用准确率进行评分,准确率值越大越好。

  • 实操方案不允许使用外部数据集,允许使用公开的外部预训练模型。
  • 实操方案需要在指定平台进行评分,提交csv格式。

提交样例:


ID,Target
1,TVProgram-Play
2,HomeAppliance-Control
3,Audio-Play
4,Alarm-Update
5,HomeAppliance-Control
6,FilmTele-Play
7,FilmTele-Play
8,Music-Play
9,Calendar-Query
10,Video-Play
11,Alarm-Update
12,Music-Play
13,Travel-Query
14,TVProgram-Play


4.基本思路


image.png


二、环境准备


%cd ~
!git clone https://gitee.com/paddlepaddle/PaddleNLP/


/home/aistudio
正克隆到 'PaddleNLP'...
remote: Enumerating objects: 47494, done.
remote: Counting objects: 100% (34730/34730), done.
remote: Compressing objects: 100% (17072/17072), done.
remote: Total 47494 (delta 23983), reused 27016 (delta 16711), pack-reused 12764
接收对象中: 100% (47494/47494), 87.84 MiB | 4.86 MiB/s, 完成.
处理 delta 中: 100% (32328/32328), 完成.
检查连接... 完成。


!pip install -U paddlenlp


三、数据处理


import pandas as pd
df=pd.read_csv('data/data208091/train.csv',sep='\t',header=None)
df.head(10)

    .dataframe tbody tr th:only-of-type {         vertical-align: middle;     } .dataframe tbody tr th {     vertical-align: top; } .dataframe thead th {     text-align: right; }

0 1
0 还有双鸭山到淮阴的汽车票吗13号的 Travel-Query
1 从这里怎么回家 Travel-Query
2 随便播放一首专辑阁楼里的佛里的歌 Music-Play
3 给看一下墓王之王嘛 FilmTele-Play
4 我想看挑战两把s686打突变团竞的游戏视频 Video-Play
5 我想看和平精英上战神必备技巧的游戏视频 Video-Play
6 2019年古装爱情电视剧小女花不弃的花絮播放一下 Video-Play
7 找一个2004年的推理剧给我看一会呢 FilmTele-Play
8 自驾游去深圳都经过那些地方啊 Travel-Query
9 给我转播今天的女子双打乒乓球比赛现场 Video-Play


1.生成label文件


labels=df[1].unique()
# 打开文件并写入列表中的元素  
with open('label.txt', 'w') as f:  
    for item in labels:  
        f.write(str(item) + '\n')


!cat label.txt


Travel-Query
Music-Play
FilmTele-Play
Video-Play
Radio-Listen
HomeAppliance-Control
Weather-Query
Alarm-Update
Calendar-Query
TVProgram-Play
Audio-Play
Other


%cd ~/PaddleNLP/applications/text_classification/multi_class
!mkdir data


/home/aistudio/PaddleNLP/applications/text_classification/multi_class


2.划分数据集


  • train_test_split直接按照 8:2 划分训练集、测试集


import os
from sklearn.model_selection import train_test_split
# 划分训练及测试集
train_data, dev_data= train_test_split( df, test_size=0.2)
root='data'
train_filename = os.path.join(root, 'train.txt')
dev_filename = os.path.join(root, 'dev.txt')
train_data.to_csv(train_filename, index=False, sep="\t", header=None)
dev_data.to_csv(dev_filename, index=False, sep="\t", header=None)


3.数据整理


训练需要准备指定格式的本地数据集,如果没有已标注的数据集,可以参考文本分类任务doccano数据标注使用指南进行文本分类数据标注。指定格式本地数据集目录结构:


3.1目录结构


data/
├── train.txt # 训练数据集文件
├── dev.txt # 开发数据集文件
└── label.txt # 分类标签文件


3.2数据集格式


训练、开发、测试数据集 文件中文本与标签类别名用tab符'\t'分隔开,文本中避免出现tab符'\t'。

train.txt/dev.txt/test.txt 文件格式:


<文本>'\t'<标签>
<文本>'\t'<标签>
...


3.3分类标签格式


label.txt(分类标签文件)记录数据集中所有标签集合,每一行为一个标签名。

  • label.txt 文件格式:


<标签>
<标签>
!cp ~/data/data208091/test.csv data/test.txt
!cp ~/label.txt data/label.txt


!tree data


data
├── bad_case.txt
├── dev.txt
├── label.txt
├── test.txt
└── train.txt
0 directories, 5 files


四、模型训练


使用使用 Trainer API 对模型进行微调

只需输入模型、数据集等就可以使用 Trainer API 高效快速地进行预训练、微调和模型压缩等任务,可以一键启动多卡训练、混合精度训练、梯度累积、断点重启、日志显示等功能,Trainer API 还针对训练过程的通用训练配置做了封装,比如:优化器、学习率调度等。


1.训练参数


主要的配置的参数为:

  • do_train: 是否进行训练。
  • do_eval: 是否进行评估。
  • debug: 与do_eval配合使用,是否开启debug模型,对每一个类别进行评估。
  • do_export: 训练结束后是否导出静态图。
  • do_compress: 训练结束后是否进行模型裁剪。
  • model_name_or_path: 内置模型名,或者模型参数配置目录路径。默认为ernie-3.0-tiny-medium-v2-zh
  • output_dir: 模型参数、训练日志和静态图导出的保存目录。
  • device: 使用的设备,默认为gpu
  • num_train_epochs: 训练轮次,使用早停法时可以选择100。
  • early_stopping: 是否使用早停法,也即一定轮次后评估指标不再增长则停止训练。
  • early_stopping_patience: 在设定的早停训练轮次内,模型在开发集上表现不再上升,训练终止;默认为4。
  • learning_rate: 预训练语言模型参数基础学习率大小,将与learning rate scheduler产生的值相乘作为当前学习率。
  • max_length: 最大句子长度,超过该长度的文本将被截断,不足的以Pad补全。提示文本不会被截断。
  • per_device_train_batch_size: 每次训练每张卡上的样本数量。可根据实际GPU显存适当调小/调大此配置。
  • per_device_eval_batch_size: 每次评估每张卡上的样本数量。可根据实际GPU显存适当调小/调大此配置。
  • max_length: 最大句子长度,超过该长度的文本将被截断,不足的以Pad补全。提示文本不会被截断。
  • train_path: 训练集路径,默认为"./data/train.txt"。
  • dev_path: 开发集集路径,默认为"./data/dev.txt"。
  • test_path: 测试集路径,默认为"./data/dev.txt"。
  • label_path: 标签路径,默认为"./data/label.txt"。
  • bad_case_path: 错误样本保存路径,默认为"./data/bad_case.txt"。
  • width_mult_list:裁剪宽度(multi head)保留的比例列表,表示对self_attention中的 qkv 以及 ffn 权重宽度的保留比例,保留比例乘以宽度(multi haed数量)应为整数;默认是None。 训练脚本支持所有TraingArguments的参数,更多参数介绍可参考TrainingArguments 参数介绍


2.开始训练


!python train.py \
    --do_train \
    --do_eval \
    --do_export \
    --model_name_or_path ernie-3.0-tiny-medium-v2-zh \
    --output_dir checkpoint \
    --device gpu \
    --num_train_epochs 100 \
    --early_stopping True \
    --early_stopping_patience 5 \
    --learning_rate 3e-5 \
    --max_length 128 \
    --per_device_eval_batch_size 32 \
    --per_device_train_batch_size 32 \
    --metric_for_best_model accuracy \
    --load_best_model_at_end \
    --logging_steps 5 \
    --evaluation_strategy epoch \
    --save_strategy epoch \
    --save_total_limit 1


3.训练日志


[2023-04-11 17:30:31,229] [    INFO] -   Num examples = 2420
[2023-04-11 17:30:31,229] [    INFO] -   Total prediction steps = 76
[2023-04-11 17:30:31,229] [    INFO] -   Pre device batch size = 32
[2023-04-11 17:30:31,229] [    INFO] -   Total Batch size = 32
  0%|                                                    | 0/76 [00:00<?, ?it/s]
  9%|████                                        | 7/76 [00:00<00:01, 58.78it/s]
 17%|███████▎                                   | 13/76 [00:00<00:01, 53.60it/s]
 25%|██████████▊                                | 19/76 [00:00<00:01, 53.72it/s]
 33%|██████████████▏                            | 25/76 [00:00<00:00, 54.40it/s]
 41%|█████████████████▌                         | 31/76 [00:00<00:00, 53.83it/s]
 49%|████████████████████▉                      | 37/76 [00:00<00:00, 53.93it/s]
 57%|████████████████████████▎                  | 43/76 [00:00<00:00, 54.07it/s]
 64%|███████████████████████████▋               | 49/76 [00:00<00:00, 53.70it/s]
 72%|███████████████████████████████            | 55/76 [00:01<00:00, 54.41it/s]
 80%|██████████████████████████████████▌        | 61/76 [00:01<00:00, 53.62it/s]
 88%|█████████████████████████████████████▉     | 67/76 [00:01<00:00, 53.80it/s]
eval_loss: 0.38935500383377075, eval_accuracy: 0.9347107438016529, eval_micro_precision: 0.9347107438016529, eval_micro_recall: 0.9347107438016529, eval_micro_f1: 0.9347107438016529, eval_macro_precision: 0.8868087630817776, eval_macro_recall: 0.883506204765109, eval_macro_f1: 0.8840559834605317, eval_runtime: 1.4272, eval_samples_per_second: 1695.617, eval_steps_per_second: 53.251, epoch: 12.0
 12%|████▌                                 | 3636/30300 [02:54<15:32, 28.61it/s]
100%|███████████████████████████████████████████| 76/76 [00:01<00:00, 58.29it/s]
                                                                                [2023-04-11 17:30:32,658] [    INFO] - Saving model checkpoint to checkpoint/checkpoint-3636
[2023-04-11 17:30:32,659] [    INFO] - Configuration saved in checkpoint/checkpoint-3636/config.json
[2023-04-11 17:30:33,291] [    INFO] - tokenizer config file saved in checkpoint/checkpoint-3636/tokenizer_config.json
[2023-04-11 17:30:33,291] [    INFO] - Special tokens file saved in checkpoint/checkpoint-3636/special_tokens_map.json
[2023-04-11 17:30:34,681] [    INFO] - Deleting older checkpoint [checkpoint/checkpoint-3333] due to args.save_total_limit
[2023-04-11 17:30:34,814] [    INFO] - 
Training completed. 
[2023-04-11 17:30:34,814] [    INFO] - Loading best model from checkpoint/checkpoint-2121 (score: 0.9400826446280992).
train_runtime: 177.1813, train_samples_per_second: 5463.331, train_steps_per_second: 171.011, train_loss: 0.3273027794348789, epoch: 12.0
 12%|████▌                                 | 3636/30300 [02:57<21:39, 20.52it/s]
[2023-04-11 17:30:35,236] [    INFO] - Saving model checkpoint to checkpoint
[2023-04-11 17:30:35,238] [    INFO] - Configuration saved in checkpoint/config.json
[2023-04-11 17:30:35,875] [    INFO] - tokenizer config file saved in checkpoint/tokenizer_config.json
[2023-04-11 17:30:35,875] [    INFO] - Special tokens file saved in checkpoint/special_tokens_map.json
[2023-04-11 17:30:35,876] [    INFO] - ***** train metrics *****
[2023-04-11 17:30:35,876] [    INFO] -   epoch                    =       12.0
[2023-04-11 17:30:35,876] [    INFO] -   train_loss               =     0.3273
[2023-04-11 17:30:35,876] [    INFO] -   train_runtime            = 0:02:57.18
[2023-04-11 17:30:35,876] [    INFO] -   train_samples_per_second =   5463.331
[2023-04-11 17:30:35,876] [    INFO] -   train_steps_per_second   =    171.011
[2023-04-11 17:30:36,113] [    INFO] - ***** Running Evaluation *****
[2023-04-11 17:30:36,113] [    INFO] -   Num examples = 2420
[2023-04-11 17:30:36,113] [    INFO] -   Total prediction steps = 76
[2023-04-11 17:30:36,113] [    INFO] -   Pre device batch size = 32
[2023-04-11 17:30:36,113] [    INFO] -   Total Batch size = 32
100%|███████████████████████████████████████████| 76/76 [00:01<00:00, 55.75it/s]
[2023-04-11 17:30:37,541] [    INFO] - ***** eval metrics *****
[2023-04-11 17:30:37,541] [    INFO] -   epoch                   =       12.0
[2023-04-11 17:30:37,541] [    INFO] -   eval_accuracy           =     0.9401
[2023-04-11 17:30:37,541] [    INFO] -   eval_loss               =     0.2693
[2023-04-11 17:30:37,541] [    INFO] -   eval_macro_f1           =     0.8951
[2023-04-11 17:30:37,541] [    INFO] -   eval_macro_precision    =     0.8971
[2023-04-11 17:30:37,541] [    INFO] -   eval_macro_recall       =     0.8938
[2023-04-11 17:30:37,541] [    INFO] -   eval_micro_f1           =     0.9401
[2023-04-11 17:30:37,541] [    INFO] -   eval_micro_precision    =     0.9401
[2023-04-11 17:30:37,541] [    INFO] -   eval_micro_recall       =     0.9401
[2023-04-11 17:30:37,541] [    INFO] -   eval_runtime            = 0:00:01.42
[2023-04-11 17:30:37,541] [    INFO] -   eval_samples_per_second =   1695.007
[2023-04-11 17:30:37,541] [    INFO] -   eval_steps_per_second   =     53.232
[2023-04-11 17:30:37,543] [    INFO] - Exporting inference model to checkpoint/export/model
[2023-04-11 17:30:43,826] [    INFO] - Inference model exported.
[2023-04-11 17:30:43,827] [    INFO] - tokenizer config file saved in checkpoint/export/tokenizer_config.json
[2023-04-11 17:30:43,827] [    INFO] - Special tokens file saved in checkpoint/export/special_tokens_map.json
[2023-04-11 17:30:43,827] [    INFO] - id2label file saved in checkpoint/export/id2label.json


4.训练结果和可选模型


程序运行时将会自动进行训练,评估。同时训练过程中会自动保存开发集上最佳模型在指定的 output_dir 中,保存模型文件结构如下所示:


checkpoint/
├── export # 静态图模型
├── config.json # 模型配置文件
├── model_state.pdparams # 模型参数文件
├── tokenizer_config.json # 分词器配置文件
├── vocab.txt
└── special_tokens_map.json
  • 中文训练任务(文本支持含部分英文)推荐使用"ernie-1.0-large-zh-cw"、"ernie-3.0-tiny-base-v2-zh"、"ernie-3.0-tiny-medium-v2-zh"、"ernie-3.0-tiny-micro-v2-zh"、"ernie-3.0-tiny-mini-v2-zh"、"ernie-3.0-tiny-nano-v2-zh"、"ernie-3.0-tiny-pico-v2-zh"。
  • 英文训练任务推荐使用"ernie-3.0-tiny-mini-v2-en"、 "ernie-2.0-base-en"、"ernie-2.0-large-en"。
  • 英文和中文以外语言的文本分类任务,推荐使用基于96种语言(涵盖法语、日语、韩语、德语、西班牙语等几乎所有常见语言)进行预训练的多语言预训练模型"ernie-m-base"、"ernie-m-large",详情请参见ERNIE-M论文


五、模型评估


训练后的模型我们可以开启debug模式,对每个类别分别进行评估,并打印错误预测样本保存在bad_case.txt。默认在GPU环境下使用,在CPU环境下修改参数配置为--device "cpu":


1.开始训练


!python train.py \
    --do_eval \
    --debug True \
    --device gpu \
    --model_name_or_path checkpoint \
    --output_dir checkpoint \
    --per_device_eval_batch_size 32 \
    --max_length 128 \
    --test_path './data/dev.txt'


2.输出日志


[2023-04-11 17:38:48,156] [    INFO] - ----------------------------
[2023-04-11 17:38:48,156] [    INFO] - Class name: Calendar-Query
[2023-04-11 17:38:48,156] [    INFO] - Evaluation examples in dev dataset: 241(10.0%) | precision: 99.17 | recall: 99.17 | F1 score 99.17
[2023-04-11 17:38:48,156] [    INFO] - ----------------------------
[2023-04-11 17:38:48,156] [    INFO] - Class name: TVProgram-Play
[2023-04-11 17:38:48,156] [    INFO] - Evaluation examples in dev dataset: 47(1.9%) | precision: 71.43 | recall: 63.83 | F1 score 67.42
[2023-04-11 17:38:48,156] [    INFO] - ----------------------------
[2023-04-11 17:38:48,156] [    INFO] - Class name: Audio-Play
[2023-04-11 17:38:48,156] [    INFO] - Evaluation examples in dev dataset: 49(2.0%) | precision: 78.43 | recall: 81.63 | F1 score 80.00
[2023-04-11 17:38:48,156] [    INFO] - ----------------------------
[2023-04-11 17:38:48,156] [    INFO] - Class name: Other
[2023-04-11 17:38:48,156] [    INFO] - Evaluation examples in dev dataset: 40(1.7%) | precision: 65.85 | recall: 67.50 | F1 score 66.67
[2023-04-11 17:38:48,156] [    INFO] - ----------------------------
[2023-04-11 17:38:48,158] [    INFO] - Bad case in dev dataset saved in ./data/bad_case.txt
100%|███████████████████████████████████████████| 76/76 [00:01<00:00, 55.79it/s]


3.错误分析


预测错误的会进行题型,bad case。

文本分类预测过程中常会遇到诸如"模型为什么会预测出错误的结果","如何提升模型的表现"等问题。Analysis模块 提供了可解释性分析、数据优化等功能,旨在帮助开发者更好地分析文本分类模型预测结果和对模型效果进行优化。

具体见 bad_case.txt


!head -n10 data/bad_case.txt
Text  Label Prediction
一禅小和尚第4集往后接着播放我要看呢  Video-Play  FilmTele-Play
济南生活的交通进行时还在直播中吗我想看下  TVProgram-Play  Video-Play
能否回放一下早上七点二十分的时事关提案吗我想看下  Video-Play  TVProgram-Play
播放一下那个启航  FilmTele-Play Music-Play
电视只有声音而没有图像该打什么号码的电话  HomeAppliance-Control Other
最近有什么新电影,调到小楚和野营的节目爱电影了解一下  Radio-Listen  TVProgram-Play
那射手座呢牧羊座呢牧羊座是白羊座吗 Other Calendar-Query
飞轮海负伤排舞谢歌迷为保持最佳状态进补图  Other Video-Play
吴彦祖还表示一旦老婆有了他就会停工一年当专业奶爸  Music-Play  FilmTele-Play

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
人工智能 智能硬件
基于PaddleNLP的端到端智能家居对话意图识别(下)
基于PaddleNLP的端到端智能家居对话意图识别
344 0
|
物联网 大数据 智能硬件
|
1月前
|
传感器 监控 搜索推荐
探索智能家居技术的未来
【10月更文挑战第6天】 本文深入探讨了智能家居技术的发展历程、当前应用及其未来前景。通过分析物联网(IoT)的基本原理和智能家居设备的实际应用案例,揭示了该领域面临的挑战与机遇,并提出了未来发展的趋势和可能性。
43 3
|
1月前
|
传感器 人工智能 物联网
探索智能家居技术:现状与未来
本文深入探讨了智能家居技术的发展历程、当前主要技术和应用,并展望了其未来的发展趋势。通过对现有技术的详细解析和案例分析,揭示了智能家居在提升生活品质、节能减排等方面的潜力,同时指出了目前面临的挑战和可能的解决方案。
|
2月前
|
机器学习/深度学习 人工智能 物联网
智能家居技术的未来:从自动化到智能化的跨越
本文将探讨智能家居技术的发展趋势,从早期的自动化设备到现代的智能系统,分析其背后的技术驱动因素和市场动态。文章将详细讨论物联网(IoT)、人工智能(AI)、机器学习等技术如何推动智能家居的发展,并展望智能家居未来的发展方向。
|
2月前
|
监控 物联网 数据安全/隐私保护
智能家居包含了众多设备,在通过智能化技术提升居家生活的便利性、安全性、节能性和舒适度
智能家居系统包含了众多设备,旨在通过智能化技术提升居家生活的便利性、安全性、节能性和舒适度。以下是一些智能家居系统中常见的设备类别及其基本操作简述:
|
1月前
|
传感器 人工智能 语音技术
探索AI技术在智能家居中的应用
【8月更文挑战第78天】本文将探讨人工智能(AI)技术在智能家居领域的应用。我们将从AI技术的基本概念入手,介绍其在智能家居中的作用,并通过代码示例展示如何实现一个简单的智能照明系统。最后,我们将总结AI技术在智能家居领域的优势和挑战。
|
2月前
|
人工智能 监控 物联网
智能家居技术的未来趋势
随着科技的飞速发展,智能家居已经从概念变成了现实。本文将探讨智能家居技术的最新进展,包括物联网(IoT)的集成、人工智能(AI)的应用、以及5G网络对智能家居的影响。我们将一起看看这些技术如何使家居生活更加便捷、安全和节能,并展望未来可能带来的改变。
82 4