白话Elasticsearch34-深入聚合数据分析之案例实战bucket嵌套实现颜色+品牌的多层下钻分析

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 白话Elasticsearch34-深入聚合数据分析之案例实战bucket嵌套实现颜色+品牌的多层下钻分析

20190806092132811.jpg

概述

继续跟中华石杉老师学习ES,第34篇

课程地址https://www.roncoo.com/view/55


案例

原始数据:


20190823153138707.png


需求


白话Elasticsearch33-深入聚合数据分析之案例实战Terms Aggregation + Avg Aggregation ( bucket + metrics ) 中,我们演示了 对颜色进行bucket操作以后,再计算每种颜色的平均价格的metrics操作。


假设 又来了个新需求: 从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格


那就需要进行多层次的下钻分析了


举个例子:比如说,我们现在的索引中红色的电视有4台,同时这4台电视中,有3台是属于长虹的,1台是属于小米的


那如何计算出 : 红色电视中的3台长虹的平均价格是多少? 红色电视中的1台小米的平均价格是多少?


解决

Step1.对每种颜色进行bucket分组

GET /tvs/sales/_search
{
  "size": 0 ,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      }
    }
  }
}


返回


20190822195614689.png

Step2.对每种颜色进行bucket分组 , 然后对每个分组再次计算平均价格

GET /tvs/sales/_search
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "color_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}


返回:


20190822195630372.png

Step3.对每种颜色进行bucket分组 , 然后对每个分组再次计算平均价格 , 紧接再对每种颜色按照brand分组,直接写到和 color_avg_price 并列的地方就可以了

GET /tvs/sales/_search
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "color_avg_price": {
          "avg": {
            "field": "price"
          }
        },
        "group_by_brand": {
          "terms": {
            "field": "brand"
          }
        }
      }
    }
  }
}


返回

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_color": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "红色",
          "doc_count": 4,
          "color_avg_price": {
            "value": 3250
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "长虹",
                "doc_count": 3
              },
              {
                "key": "三星",
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "绿色",
          "doc_count": 2,
          "color_avg_price": {
            "value": 2100
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 1
              },
              {
                "key": "小米",
                "doc_count": 1
              }
            ]
          }
        },
        {
          "key": "蓝色",
          "doc_count": 2,
          "color_avg_price": {
            "value": 2000
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 1
              },
              {
                "key": "小米",
                "doc_count": 1
              }
            ]
          }
        }
      ]
    }
  }
}


Step4.对每种颜色进行bucket分组 , 然后对每个分组再次计算平均价格 , 紧接再对每种颜色按照brand分组,直接写到和 color_avg_price 并列的地方就可以了。 最后对品牌进行metrics操作,即求每种品牌的平均价格,所以要在 brand 这个bucket中,再次aggs

GET /tvs/sales/_search
{
  "size": 0 ,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "color_avg_price": {
          "avg": {
            "field": "price"
          }
        },
        "group_by_brand":{
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "brand_avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}

到这里,就一步步完成了该需求,来看下返回结果吧

返回:

{
  "took": 4,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "group_by_color": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "红色",
          "doc_count": 4,
          "color_avg_price": {
            "value": 3250
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "长虹",
                "doc_count": 3,
                "brand_avg_price": {
                  "value": 1666.6666666666667
                }
              },
              {
                "key": "三星",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 8000
                }
              }
            ]
          }
        },
        {
          "key": "绿色",
          "doc_count": 2,
          "color_avg_price": {
            "value": 2100
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 1200
                }
              },
              {
                "key": "小米",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 3000
                }
              }
            ]
          }
        },
        {
          "key": "蓝色",
          "doc_count": 2,
          "color_avg_price": {
            "value": 2000
          },
          "group_by_brand": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 1500
                }
              },
              {
                "key": "小米",
                "doc_count": 1,
                "brand_avg_price": {
                  "value": 2500
                }
              }
            ]
          }
        }
      ]
    }
  }
}


校验下

原始数据:

20190822200727810.png


我们通过ES算出来的数据:


20190822200548931.png


对比下原始数据,符合预期,至此实现了该需求的DSL 。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
弹性计算 运维 Serverless
超值选择:阿里云Elasticsearch Serverless在企业数据检索与分析中的高性能与灵活性
本文介绍了阿里云Elasticsearch Serverless服务的高性价比与高度弹性灵活性。
160 8
|
3月前
|
存储 SQL 监控
|
3月前
|
运维 监控 安全
|
4月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
311 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
4月前
|
数据挖掘 UED
ChatGPT数据分析——探索性分析
ChatGPT数据分析——探索性分析
78 1
|
4月前
|
数据可视化 数据挖掘 数据处理
ChatGPT数据分析应用——热力图分析
ChatGPT数据分析应用——热力图分析
171 1
|
4月前
|
数据挖掘
ChatGPT在常用的数据分析方法中的应用(分组分析)
ChatGPT在常用的数据分析方法中的应用(分组分析)
96 1
|
4月前
|
数据挖掘 数据处理
ChatGPT在常用的数据分析方法中的应用(交叉分析)
ChatGPT在常用的数据分析方法中的应用(交叉分析)
77 1
|
5月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
397 7
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
95 0

热门文章

最新文章