【Java虚拟机】JVM调优和分析案例综合实战

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 【Java虚拟机】JVM调优和分析案例综合实战

1.什么是JVM性能优化

jvm性能优化涉及到两个很重要的概念:吞吐量和响应时间。jvm调优主要是针对他们进行调整优化,达到一个理想的目标,根据业务确定目标是吞吐量优先还是响应时间优先。

吞吐量:用户代码执行时间/(用户代码执行时间+GC执行时间)。

响应时间:整个接口的响应时间(用户代码执行时间+GC执行时间),STW时间越短,响应时间越短。

调优方法论

监控JVM性能

对JVM的运行情况进行监控,以了解应用程序的瓶颈和性能瓶颈

可以使用JVM自带的工具,如jstat、jmap、jstack等,或者第三方工具,如VisualVM、JProfiler等

压测基准指标

对程序进行压测,得出接口对应的吞吐量、响应时间等

外部现象

对用户体验来说,就是响应速度

可以用压测工具jmeter进行压测得出相关性能指标

内部现象:

分析GC情况,是JVM性能调优的重要因素,需要掌握GC的工作机制和GC日志的含义

可以使用JVM自带的GC日志或者第三方工具,如GCEasy等来分析GC情况,了解GC的频率、时间、内存占用等情况

调整JVM参数

通过调整堆大小、GC算法、线程池大小等参数来提高应用程序的性能

注意:不同的应用程序和环境可能需要不同的JVM参数配置,比如IO密集型和CPU密集型应用

二次压测分析

通过调整jvm参数后,二次压测看性能指标提升还是下降

内部:GC日志,看吞吐量,GC次数,停顿时间变化

外部:接口对应的吞吐量、响应时间是否更优

其他优化方式

优化代码

通过避免不必要的对象创建、减少同步操作、使用缓存等方式来优化代码。

注意:代码优化应该遵循“先正确,再优化”的原则,不应该牺牲代码的可读性和可维护性

使用并发编程

使用多线程、线程池等方式来提高并发性能,比如调整线程池的队列长度,存活线程数量等

注意:并发编程需要考虑线程安全和锁竞争等问题,需要进行正确的设计和实现

使用缓存

可以使用本地缓存、分布式缓存等方式来提高数据访问性能

注意:缓存需要考虑缓存一致性和缓存失效等问题,需要进行正确的设计和实现

避免IO阻塞

使用异步IO、NIO等方式来提高IO性能,比如前面学的CompletableFuture异步任务编排

注意:IO编程需要考虑并发性和可靠性等问题,需要进行正确的设计和实现

分布式+集群技术

使用负载均衡+集群技术,提升单节点的处理能力

2.JVM调优之压测环境准备

  • SpringBoot 编写的jar的程序,接口一个返回随机组成的100个以内的对象的list (使用JDK17)
/**
 * @author lixiang
 * @date 2023/5/8 21:44
 */
@Slf4j
@RestController
@RequestMapping("/spring-test")
public class SpringTestController {
    @RequestMapping("query")
    public Map<String, Object> query() throws InterruptedException {
        int num = (int) (Math.random() * 100) + 1;
        //申请5MB内存
        Byte[] bytes = new Byte[5 * 1024 * 1024];
        List<Product> productList = new ArrayList<>();
        for (int i = 0; i < num; i++) {
            Product product = new Product();
            product.setPrice((int) Math.random() * 100);
            product.setTitle("商品编号" + i);
            productList.add(product);
        }
        Thread.sleep(5);
        Map<String, Object> map = new HashMap<>(16);
        map.put("data", productList);
        return map;
    }
}
  • Jmeter压测工具准备,测试计划 200并发,循环500次

3.JVM性能优化之堆大小配置

  • 堆大小配置,FullGC次数的性能影响
  • 性能优化初始值
-Xms1g # 配置初始堆内存1G
-Xmx1g # 配置最大堆内存1G
-XX:+UseG1GC # 使用G1回收器
-XX:MaxGCPauseMillis=200 # 设置最大停顿时间200ms
-XX:G1HeapRegionSize=32M # 设置G1每个region块大小为32M
-XX:ActiveProcessorCount=8 # 设置JVM使用的CPU核数限制为8
-XX:+HeapDumpOnOutOfMemoryError # 当JVM发生OOM时,自动生成DUMP文件
-XX:HeapDumpPath=heapdump.hprof # DUMP文件路径
-XX:+PrintCommandLineFlags # 监控开启
-Xlog:gc=info:file=portal_gc.log:utctime,level,tags:filecount=50,filesize=100M 
  # Xlog:指定日志输出方式为日志文件。
  # gc*:指定日志输出类型为GC相关的日志。
  # info:指定输出日志的级别为info级别。
  # file=portal_gc.log:指定日志输出的文件名为portal_gc.log。
  # utctime:指定日志输出的时间戳使用UTC时间。
  # level,tags:指定日志输出的格式包含级别和标签信息。
  # filecount=50:指定最多保存50个日志文件。
  # filesize=100M:指定每个日志文件的大小为100MB。
  • 机器配置为:8核16G 500M带宽

3bbb957363654f62a6802252f09be29c.jpg

  • 设置初始堆内存和最大堆内存为1G,压测
nohup java -jar spring-test-1.0-SNAPSHOT.jar -Xms1g -Xmx1g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:G1HeapRegionSize=32M -XX:ActiveProcessorCount=8 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/local/jmeter/heapdump.hprof -XX:+PrintCommandLineFlags -Xlog:gc=info:file=/usr/local/jmeter/portal_gc.log:utctime,level,tags:filecount=50,filesize=100M &


19622210a94047b69df8479d11e56281.jpg


image.jpeg

当我们设置堆内存为1G的时候,整体的吞吐量为40%以上,这已经很低了,期间Young GC发生了7451次,Full GC发生了142次

  • 设置初始堆内存和最大堆内存为2G,压测
nohup java -jar spring-test-1.0-SNAPSHOT.jar -Xms2g -Xmx2g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:G1HeapRegionSize=32M -XX:ActiveProcessorCount=8 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/local/jmeter/heapdump.hprof -XX:+PrintCommandLineFlags -Xlog:gc=info:file=/usr/local/jmeter/portal_gc.log:utctime,level,tags:filecount=50,filesize=100M &

769a9244797b45309d7362166dc4899f.jpg

7a19f3a8f6534eb68083dfe1b9867b48.jpg

当把堆内存设置为4G的时候,整体的吞吐量提升到76%,Young GC发生了504,一次Full GC都没有发生。

  • 设置初始堆内存和最大堆内存为6G,压测
nohup java -jar spring-test-1.0-SNAPSHOT.jar -Xms6g -Xmx6g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:G1HeapRegionSize=32M -XX:ActiveProcessorCount=8 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/local/jmeter/heapdump.hprof -XX:+PrintCommandLineFlags -Xlog:gc=info:file=/usr/local/jmeter/portal_gc.log:utctime,level,tags:filecount=50,filesize=100M &

efb541acf58544ed8a966c03d06ed30f.jpg


2b615311847f477a9847f3a0f1e58b6c.jpg

当把堆内存设置为6G的时候,整体吞吐量到达87%,Yong GC发生了196次,Full GC发生了0次。

总结:通过对堆内存的调整,发现4G是投入产出比最高的参数配置,所以当前配置可以采用4G的堆内存。

4.JVM性能优化之收集器配置

通过上面配置堆内存我们得出4G是当前机器和应用配置的最佳堆内存,这里我们不改变堆内存的大小,采用4G的堆内存,改变垃圾收集器,看看对接口吞吐量的影响。

这里我们采用ParallelGC,目前G1垃圾器在对于并发量大的应用来说,已经是最优的选择啦,我们这里用ParallelGC主要做一个对比。

nohup java -jar spring-test-1.0-SNAPSHOT.jar -Xms4g -Xmx4g -XX:+UseParallelGC -XX:MaxGCPauseMillis=200 -XX:G1HeapRegionSize=32M -XX:ActiveProcessorCount=8 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/usr/local/jmeter/heapdump.hprof -XX:+PrintCommandLineFlags -Xlog:gc=info:file=/usr/local/jmeter/portal_gc.log:utctime,level,tags:filecount=50,filesize=100M &

cc88e75037124fd5b88427f836eeb071.jpg

9c7f34c34abc4b81bb549b58dac804ea.jpg


相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
目录
打赏
0
0
0
0
61
分享
相关文章
JBoltAI 框架完整实操案例 在 Java 生态中快速构建大模型应用全流程实战指南
本案例基于JBoltAI框架,展示如何快速构建Java生态中的大模型应用——智能客服系统。系统面向电商平台,具备自动回答常见问题、意图识别、多轮对话理解及复杂问题转接人工等功能。采用Spring Boot+JBoltAI架构,集成向量数据库与大模型(如文心一言或通义千问)。内容涵盖需求分析、环境搭建、代码实现(知识库管理、核心服务、REST API)、前端界面开发及部署测试全流程,助你高效掌握大模型应用开发。
116 5
2025 年 Java 核心技术从入门到精通实战指南
《2025年Java核心技术实战指南》全面覆盖Java开发的最新趋势与最佳实践。内容包括Java新特性(如模式匹配、文本块、记录类)、微服务架构(Spring Boot 3.0+、Spring Cloud)、响应式编程(Reactor、WebFlux)、容器化与云原生(Docker、Kubernetes)、数据访问技术(JPA、R2DBC)、函数式编程、单元测试与集成测试(JUnit 5、Mockito)、性能优化与监控等。通过实战案例,帮助开发者掌握构建高性能、高可用系统的技能。代码资源可从[链接](https://pan.quark.cn/s/14fcf913bae6)获取。
120 7
2025 版 Java 学习路线实战指南从入门到精通
《Java学习路线实战指南(2025版)》是一份全面的Java开发学习手册,涵盖基础环境搭建、核心语法与新特性、数据结构与算法、微服务架构、云原生技术栈、AI融合及项目实战。内容包括JDK安装配置、IntelliJ IDEA设置、Records类与模式匹配增强、LeetCode题解、Spring Cloud微服务开发、Kubernetes部署、OpenAI API调用等。结合在线商城系统案例,采用Vue 3、Spring Boot 3.5、MySQL、Elasticsearch等技术,提供从理论到实践的完整路径,助力开发者掌握2025年最新趋势与最佳实践。
153 4
|
28天前
|
Java 无锁方式实现高性能线程实战操作指南
本文深入探讨了现代高并发Java应用中单例模式的实现方式,分析了传统单例(如DCL)的局限性,并提出了多种无锁实现方案。包括基于ThreadLocal的延迟初始化、VarHandle原子操作、Record不可变对象、响应式编程(Reactor)以及CDI依赖注入等实现方式。每种方案均附有代码示例及适用场景,同时通过JMH性能测试对比各实现的优劣。最后,结合实际案例设计了一个高性能配置中心,展示了无锁单例在实际开发中的应用。总结中提出根据场景选择合适的实现方式,并遵循现代单例设计原则以优化性能和安全性。文中还提供了代码获取链接,便于读者实践与学习。
38 0
Redis 实操要点:Java 最新技术栈的实战解析
本文介绍了基于Spring Boot 3、Redis 7和Lettuce客户端的Redis高级应用实践。内容包括:1)现代Java项目集成Redis的配置方法;2)使用Redisson实现分布式可重入锁与公平锁;3)缓存模式解决方案,包括布隆过滤器防穿透和随机过期时间防雪崩;4)Redis数据结构的高级应用,如HyperLogLog统计UV和GeoHash处理地理位置。文章提供了详细的代码示例,涵盖Redis在分布式系统中的核心应用场景,特别适合需要处理高并发、分布式锁等问题的开发场景。
119 38
2025 年 Java 核心技术全面升级与实战应用详解
这份Java校招实操内容结合了最新技术趋势,涵盖核心技术、微服务架构、响应式编程、DevOps及前沿技术等六大模块。从函数式编程到Spring Cloud微服务,再到容器化与Kubernetes部署,帮助你掌握企业级开发技能。同时,提供AI集成、区块链实践和面试技巧,包括高频算法题与系统设计案例。通过学习这些内容,可应对90%以上的Java校招技术面试,并快速上手实际项目开发。资源链接:[点此获取](https://pan.quark.cn/s/14fcf913bae6)。
210 41
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
本文深入解析了Java Solon v3.2.0框架的实战应用,聚焦高并发与低内存消耗场景。通过响应式编程、云原生支持、内存优化等特性,结合API网关、数据库操作及分布式缓存实例,展示其在秒杀系统中的性能优势。文章还提供了Docker部署、监控方案及实际效果数据,助力开发者构建高效稳定的应用系统。代码示例详尽,适合希望提升系统性能的Java开发者参考。
53 4
Java Solon v3.2.0 高并发与低内存实战指南之解决方案优化
Java 大视界 -- Java 大数据在智能教育学习社区用户互动分析与社区活跃度提升中的应用(274)
本文系统阐述 Java 大数据技术在智能教育学习社区中的深度应用,涵盖数据采集架构、核心分析算法、活跃度提升策略及前沿技术探索,为教育数字化转型提供完整技术解决方案。
2025 年最新 Java 面试从基础到微服务实战指南全解析
《Java面试实战指南:高并发与微服务架构解析》 本文针对Java开发者提供2025版面试技术要点,涵盖高并发电商系统设计、微服务架构实现及性能优化方案。核心内容包括:1)基于Spring Cloud和云原生技术的系统架构设计;2)JWT认证、Seata分布式事务等核心模块代码实现;3)数据库查询优化与高并发处理方案,响应时间从500ms优化至80ms;4)微服务调用可靠性保障方案。文章通过实战案例展现Java最新技术栈(Java 17/Spring Boot 3.2)的应用.
89 9
Java 生态大模型应用开发全流程实战案例与技术路径终极对决
在Java生态中开发大模型应用,Spring AI、LangChain4j和JBoltAI是三大主流框架。本文从架构设计、核心功能、开发体验、性能扩展性、生态社区等维度对比三者特点,并结合实例分析选型建议。Spring AI适合已有Spring技术栈团队,LangChain4j灵活性强适用于学术研究,JBoltAI提供开箱即用的企业级解决方案,助力传统系统快速AI化改造。开发者可根据业务场景和技术背景选择最适合的框架。
112 2

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等