【算法】核心排序算法之堆排序原理及实战

简介: 【算法】核心排序算法之堆排序原理及实战

1.什么是堆排序

  • 指利用堆这种数据结构所设计的一种排序算法将二叉堆的数据进行排序,构建一个有序的序列
  • 排序过程中,只需要个【别临时存储】空间,所以堆排序是原地排序算法,空间复杂度为O(1)
  • 本身大顶堆和小顶堆里面的元素是无序的,只是有一定的规则在里面
  • 大顶堆,每个父节点的值都大于或等于其子节点的值,即根节点的值最大
  • 小顶堆,每个父节点的值都小于或等于其子节点的值,即根节点的值最小

efdbafe5708a47b98818bcbeb92b9212.png

  • 过程分为建堆和排序两大步骤
  • 【建堆】过程的时间复杂度为O(n),排序过程的时间复杂度为O(nlogn),所以 堆排序整体的时间复杂度为O(nlogn)
  • 【堆排序】不是稳定的算法,在排序的过程中,将堆最后一个节点跟堆顶节点互换,可能改变值相同数据的原始相对顺序
  • 流程
  • 把无序数组构建成二叉堆,建堆结束后,整个序列的最大值就是堆顶的根节点
  • 将其与末尾元素进行交换(删除操作), 堆顶a[1]与最后一个元素a[n]交换,最大元素放到下标为n的位置, 末尾就为最大值
  • 然后将剩余n-1个元素重新构造成一个堆(堆化操作),这样会得到n个元素的次小值
  • 反复执行上述步骤,得到一个有序的数组

2.编码实现

  • 无序堆构建成二叉堆
  • 利用二叉堆特性:数组索引一半后的都是叶子节点,不需要做下沉比较;一半前都是非叶子节点,才需要做下沉比较

cf1f89ec101e45e195a668d0505abf0e.png

/**
 * 堆排序
 */
public class HeapSort {
    public static void sort(int[] arr){
        //1.构建堆,数组下标0不存储数据
        int[] heap = new int[arr.length+1];
        //2.根据待排序数组,构建一个无序堆
        System.arraycopy(arr,0,heap,1,arr.length);
        //3.对堆中的元素做下沉操作,从长度一半开始,一半前都是非叶子节点,才需要做
        //二叉堆特性:数组索引一半后的都是叶子节点,不需要做下沉,一半前都是非叶子节点,才需要做
        for (int i = (heap.length)/2; i > 0; i--) {
            down(heap,i,heap.length - i);
        }
        //4.堆排序,把堆顶元素和数组最后一个索引元素交换;然后再堆化,然后堆顶又是最大元素,再和数组倒数第二索引处交换;持续进行直到最后
        //类似删除操作,只需要下沉操作重新堆化即可
        //记录未排序的元素中最大的索引
        int maxUnSortIndex = heap.length - 1;
        //通过循环,交换堆顶元素和最大未排序元素的下标
        while (maxUnSortIndex != 1) {
            //交换元素
            swap(heap, 1, maxUnSortIndex);
            //排序后最大元素所在的索引,不要参与堆的下沉,所以 递减1
            maxUnSortIndex--;
            //继续对堆顶处的元素进行下沉调整
            down(heap, 1, maxUnSortIndex);
        }
        //把heap中的数据复制到原数组source中
        System.arraycopy(heap, 1, arr, 0, arr.length);
    }
    /**
     * 使用下沉操作,堆顶和最后一个元素交换后,重新堆化
     * 不断比较 节点 arr[k]和对应 左节点arr[2*k] 和 右节点arr[2*k+1]的大小,如果当前结点小,则需要交换位置
     * 直到找到 最后一个索引节点比较完成  则结束
     * <p>
     * 数组中下标为 k 的节点
     * 左子节点下标为 2*k 的节点
     * 右子节点就是下标 为 2*k+1 的节点
     * 父节点就是下标为 k/2 取整的节点
     * @param heap
     * @param i
     * @param i1
     */
    private static void down(int[] heap, int k, int range) {
        // 最后一个节点的下标是range,即元素总个数
        while (2 * k <= range) {
            //记录当前节点的左右子节点,较大的节点
            int maxIndex;
            if (2 * k + 1 <= range) {
                if (rightBig(heap, 2 * k, 2 * k + 1)) {
                    maxIndex = 2 * k + 1;
                } else {
                    maxIndex = 2 * k;
                }
            } else {
                maxIndex = 2 * k;
            }
            //比较当前节点和较大接的值,如果当前节点大则结束
            if (heap[k] > heap[maxIndex]) {
                break;
            } else {
                //否则往下一层比较,当前节点的k变为子节点中较大的值
                swap(heap, k, maxIndex);
                k = maxIndex;
            }
        }
    }
    /**
     * 比较大小,item[left] 元素是否小于 item[right]的元素
     */
    private static boolean rightBig(int[] heap, int left, int right) {
        return heap[left] < heap[right];
    }
    /**
     * 交互堆中两个元素的位置
     */
    private static void swap(int[] heap, int i, int j) {
        int temp = heap[i];
        heap[i] = heap[j];
        heap[j] = temp;
    }
    public static void main(String[] args) {
        //待排序数组
        int[] arr = {923,23,12,4,9932,11,34,49,123,222,880};
        System.out.println("排序前:"+Arrays.toString(arr));
        //堆排序
        HeapSort.sort(arr);
        //输出排序后数组中的元素
        System.out.println("堆排序:"+ Arrays.toString(arr));
    }
}

9496ccd2362f41679dc01e807a52ebec.png

相关文章
|
7天前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
17 3
|
4天前
|
算法 搜索推荐 编译器
算法高手养成记:Python快速排序的深度优化与实战案例分析
【7月更文挑战第11天】快速排序是编程基础,以O(n log n)时间复杂度和原址排序著称。其核心是“分而治之”,通过选择基准元素分割数组并递归排序两部分。优化包括:选择中位数作基准、尾递归优化、小数组用简单排序。以下是一个考虑优化的Python实现片段,展示了随机基准选择。通过实践和优化,能提升算法技能。**
8 3
|
5天前
|
算法 Java
Java面试题:解释垃圾回收中的标记-清除、复制、标记-压缩算法的工作原理
Java面试题:解释垃圾回收中的标记-清除、复制、标记-压缩算法的工作原理
13 1
|
7天前
|
存储 传感器 算法
「AIGC算法」近邻算法原理详解
**K近邻(KNN)算法概述:** KNN是一种基于实例的分类算法,依赖于训练数据的相似性。算法选择最近的K个邻居来决定新样本的类别,K值、距离度量和特征归一化影响性能。适用于非线性数据,但计算复杂度高,适合小数据集。应用广泛,如推荐系统、医疗诊断和图像识别。通过scikit-learn库可实现分类,代码示例展示了数据生成、模型训练和决策边界的可视化。
「AIGC算法」近邻算法原理详解
|
5天前
|
算法 Python
决策树算法详细介绍原理和实现
决策树算法详细介绍原理和实现
|
5天前
|
算法 Java 开发者
Java面试题:Java内存探秘与多线程并发实战,Java内存模型及分区:理解Java堆、栈、方法区等内存区域的作用,垃圾收集机制:掌握常见的垃圾收集算法及其优缺点
Java面试题:Java内存探秘与多线程并发实战,Java内存模型及分区:理解Java堆、栈、方法区等内存区域的作用,垃圾收集机制:掌握常见的垃圾收集算法及其优缺点
8 0
|
5天前
|
存储 算法 Java
Java面试题:解释JVM的内存结构,并描述堆、栈、方法区在内存结构中的角色和作用,Java中的多线程是如何实现的,Java垃圾回收机制的基本原理,并讨论常见的垃圾回收算法
Java面试题:解释JVM的内存结构,并描述堆、栈、方法区在内存结构中的角色和作用,Java中的多线程是如何实现的,Java垃圾回收机制的基本原理,并讨论常见的垃圾回收算法
7 0
|
9天前
|
机器学习/深度学习 算法 搜索推荐
一个开源且全面的C#算法实战教程
一个开源且全面的C#算法实战教程
|
2天前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
16 7
|
4天前
|
算法 数据挖掘
MATLAB数据分析、从算法到实现
MATLAB数据分析、从算法到实现