调用多个ChatGPT API相互对话,清华开源的多轮对话数据UltraChat来了

简介: 调用多个ChatGPT API相互对话,清华开源的多轮对话数据UltraChat来了


机器之心编辑部

UltraChat 解决了数据荒的一大难题。

自 ChatGPT 发布以来,这段时间对话模型的热度只增不减。当我们赞叹这些模型表现惊艳的同时,也应该猜到其背后巨大的算力和海量数据的支持。


单就数据而言,高质量的数据至关重要,为此 OpenAI 对数据和标注工作下了很大力气。有多项研究表明,ChatGPT 是比人类更加可靠的数据标注者,如果开源社区可以获得 ChatGPT 等强大语言模型的大量对话数据,就可以训练出性能更好的对话模型。这一点羊驼系列模型 ——Alpaca、Vicuna、Koala—— 已经证明过。例如,Vicuna 使用从 ShareGPT 收集的用户共享数据对 LLaMA 模型进行指令微调,就复刻了 ChatGPT 九成功力。越来越多的证据表明,数据是训练强大语言模型的第一生产力。


ShareGPT 是一个 ChatGPT 数据共享网站,用户会上传自己觉得有趣的 ChatGPT 回答。ShareGPT 上的数据是开放但琐碎的,需要研究人员自己收集整理。如果能够有一个高质量的,覆盖范围广泛的数据集,开源社区在对话模型研发方面将会事半功倍。


基于此,最近一个名为 UltraChat 的项目就系统构建了一个超高质量的对话数据集。项目作者尝试用两个独立的 ChatGPT Turbo API 进行对话,从而生成多轮对话数据。




具体而言,该项目旨在构建一个开源、大规模、多轮的基于 Turbo APIs 的对话数据,方便研究者开发具有通用对话能力的强大语言模型。此外,考虑到隐私保护等因素,该项目不会直接使用互联网上的数据作为提示。为了确保生成数据质量,研究者在生成过程中采用了两个独立的 ChatGPT Turbo API,其中一个模型扮演用户角色来生成问题或指令,另一个模型生成反馈。



如果直接使用 ChatGPT 基于一些种子对话和问题让其自由生成,容易出现话题单一、内容重复等问题,从而难以保证数据本身的多样性。为此,UltraChat 对对话数据覆盖的主题和任务类型进行了系统的分类和设计,还对用户模型和回复模型进行了细致的提示工程,它包含三个部分:


  • 关于世界的问题(Questions about the World):这部分对话来自于对现实世界中的概念、实体和对象相关的广泛询问。所涉及的主题涵盖科技、艺术、金融等多个领域。
  • 写作与创作(Writing and Creation):这部分对话数据着重于指示 AI 从头进行创作一个完整的文本材料,并在此基础上进行后续的提问或进一步指导以完善写作,撰写的材料内容类型包括文章、博客、诗歌、故事、戏剧,电子邮件等等。
  • 对于现有资料的辅助改写(Writing and Creation):该对话数据是基于现有资料生成的,指令包括但不限于改写、续写、翻译、归纳、推理等,涵盖主题同样非常多样。


这三部分数据覆盖了大部分用户对于 AI 模型的要求。同时,这三类数据也会面临着不同的挑战,为此需要不同的构造方法。


例如,第一部分的数据主要挑战在于如何在总量为几十万组对话中尽量广泛地涵盖人类社会中的常见知识,为此研究者从自动生成的主题和来源于 Wikidata 的实体两个方面进行了筛选和构造。


第二、三部分的挑战主要来自于如何模拟用户指令,并在后续对话中让用户模型的生成尽量多样化的同时又不偏离对话的最终目标(按照要求生成材料或改写材料),为此研究者对用户模型的输入提示进行了充分的设计和实验。在构造完成之后,作者还对数据进行了后处理以削弱幻觉问题。


目前,该项目已经发布了前两部分的数据,数据量为 124 万条,应该是目前开源社区内规模最大的相关数据集。内容包含在现实世界中丰富多彩的对话,最后一部分数据将在未来发布。


世界问题数据来源于 30 个具有代表性和多样性的元主题,如下图所示:



  • 基于以上元主题,该项目生成了 1100 + 子主题用于数据构建;
  • 对于每个子主题,最多生成 10 个具体问题;
  • 然后使用 Turbo API 为 10 个问题中的每一个生成新的相关问题;
  • 对于每个问题,如上所述迭代地使用两个模型生成 3~7 轮对话。


此外,该项目从维基数据中收集了最常用的 10000 个命名实体;使用 ChatGPT API 为每个实体生成 5 个元问题;对于每个元问题,生成 10 个更具体的问题和 20 个相关但一般的问题;采样 20w 个特定问题和 25w 个一般问题以及 5w 个元问题,并为每个问题生成了 3~7 轮对话。


接下来我们看一个具体的例子:



我们在 UltraChat 平台上测试了数据搜索效果。例如,输入「音乐(music)」,系统会自动搜索出 10000 组与音乐相关的 ChatGPT 对话数据,并且每组都是多轮对话



输入关键词「数学(math)」的搜索结果,有 3346 组多轮对话:


目前,UltraChat 涵盖的信息领域已经非常多,包括医疗、教育、运动、环保等多个话题。同时,笔者尝试使用开源的 LLaMa-7B 模型在 UltraChat 上进行监督的指令微调,发现仅仅训练 10000 步后就有非常可观的效果,一些例子如下:


世界知识:分别列出 10 个很好的中国和美国大学


想象问题:当时空旅行成为可能后,有什么可能的后果?


三段论:鲸鱼是鱼吗?


假设问题:证明成龙比李小龙更出色



总体来说,UltraChat 是一个高质量、范围广的 ChatGPT 对话数据集,可以和其它数据集结合,显著地提升开源对话模型的质量。目前 UltraChat 还只放出了英文版,但也会在未来放出中文版的数据。感兴趣的读者快去探索一下吧。


相关文章
|
3月前
|
人工智能 API 开发工具
还在被复杂 API 调试工具折磨?这款开源神器救我出坑!
小华推荐开源API调试神器Yaak:离线优先、支持多协议、Git集成,告别Postman卡顿烦恼。界面清爽,一键导入,免费开源获8.5k星,10万+技术人已入坑!
319 7
|
11月前
|
人工智能 Linux API
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
Omnitool 是一款开源的 AI 桌面环境,支持本地运行,提供统一交互界面,快速接入 OpenAI、Stable Diffusion、Hugging Face 等主流 AI 平台,具备高度扩展性。
1268 94
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
|
存储 人工智能 API
AgentScope:阿里开源多智能体低代码开发平台,支持一键导出源码、多种模型API和本地模型部署
AgentScope是阿里巴巴集团开源的多智能体开发平台,旨在帮助开发者轻松构建和部署多智能体应用。该平台提供分布式支持,内置多种模型API和本地模型部署选项,支持多模态数据处理。
8158 77
AgentScope:阿里开源多智能体低代码开发平台,支持一键导出源码、多种模型API和本地模型部署
|
8月前
|
人工智能 API 开发者
狂揽7.5k星!这款开源API网关彻底解放开发者:一键聚合GPT-4、Suno、Midjourney,还能在线充值!
New API 是一款基于 One API 二次开发的 AI 模型接口管理与分发系统,支持多种大模型(如 GPT-4、Suno、Midjourney 等)统一封装为 OpenAI 格式接口调用。其核心功能包括多模型统一网关、企业级权限管控、“推理力度”分级、无魔法访问全球 AI 服务、灵活计费体系及开发者友好设计。技术架构采用 Golang + Gin 框架,支持高并发低延迟,适用于企业内部 AI 中台、多模型 SaaS 平台、学术研究协作及个人开发者工具等场景。项目开源地址:https://github.com/kingbug/new-api。
2772 6
|
9月前
|
人工智能 API 开发工具
GitHub官方开源MCP服务!GitHub MCP Server:无缝集成GitHub API,实现Git流程完全自动化
GitHub MCP Server是基于Model Context Protocol的服务器工具,提供与GitHub API的无缝集成,支持自动化处理问题、Pull Request和仓库管理等功能。
1961 2
GitHub官方开源MCP服务!GitHub MCP Server:无缝集成GitHub API,实现Git流程完全自动化
|
人工智能 前端开发 API
Gemini Coder:基于 Google Gemini API 的开源 Web 应用生成工具,支持实时编辑和预览
Gemini Coder 是一款基于 Google Gemini API 的 AI 应用生成工具,支持通过文本描述快速生成代码,并提供实时代码编辑和预览功能,简化开发流程。
972 38
Gemini Coder:基于 Google Gemini API 的开源 Web 应用生成工具,支持实时编辑和预览
|
11月前
|
存储 人工智能 关系型数据库
HiveChat:告别模型选择困难!开源ChatGPT聚合神器上线:一键切换10+模型,权限管控全免费
HiveChat 是一款专为中小团队设计的开源 AI 聊天应用,支持多种主流 AI 模型,提供高效的团队沟通和智能辅助功能。
481 9
HiveChat:告别模型选择困难!开源ChatGPT聚合神器上线:一键切换10+模型,权限管控全免费
|
人工智能 自然语言处理 API
百聆:集成Deepseek API及语音技术的开源AI语音对话助手,实时交互延迟低至800ms
百聆是一款开源的AI语音对话助手,结合ASR、VAD、LLM和TTS技术,提供低延迟、高质量的语音对话体验,适用于边缘设备和低资源环境。
3779 5
百聆:集成Deepseek API及语音技术的开源AI语音对话助手,实时交互延迟低至800ms
|
11月前
|
存储 人工智能 API
ChatGPT-on-WeChat:Star32.4k, DeepSeek加持!这款开源神器秒变AI助手,聊天体验直接起飞!
嗨,大家好,我是小华同学。今天为大家介绍一款结合DeepSeek引擎的开源项目——ChatGPT-on-WeChat,由开发者zhayujie打造。它将微信变成智能AI助手,支持文本、图片、语音对话,具备定时提醒、天气查询等扩展功能,完全开源且易于定制。项目地址:https://github.com/zhayujie/chatgpt-on-wechat。关注我们,获取更多优质开源项目和高效学习方法。
1277 11
|
人工智能 JSON 安全
DeepSeek Engineer:集成 DeepSeek API 的开源 AI 编程助手,支持文件读取、编辑并生成结构化响应
DeepSeek Engineer 是一款开源AI编程助手,通过命令行界面处理用户对话并生成结构化JSON,支持文件操作和代码生成。
1547 6
DeepSeek Engineer:集成 DeepSeek API 的开源 AI 编程助手,支持文件读取、编辑并生成结构化响应