《Apache Flink 案例集(2022版)》——1.数据集成——小米-Flink 流批一体在小米的实践(3)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——1.数据集成——小米-Flink 流批一体在小米的实践(3)

《Apache Flink 案例集(2022版)》——1.数据集成——小米-Flink 流批一体在小米的实践(2) https://developer.aliyun.com/article/1228470


2. 实时数据集成  

image.png


主要分为两个部分:  


第一部分是实时数据的收集,小米内部主要分为两大类, 分别是日志数据和 DB 的 Binlog 数据。这里主要介绍 DB 系统的 Binlog 数据收集。最初小米使用自研的 LCS Binlog 服务来进行统一的 Binlog 收集,类似于 Canal 服务,通过该服务将 Binlog 的数据统一收集到消息队列中。  


第二部分则是数据的转储, 将使用 Spark Streaming 任务将消息队列中的数据导入其他系统,比如 Kudu 或 HDFS。  


现在小米使用 Flink 对 Binlog 的收集和转储链路都进行了改造。使用 Flink CDC 收集 Binlog 数据,并写入消息队列中。同时通过 Flink 将消息队列的数据转储到其他系统,比如 Kudu、Doris、Iceberg 等等。  


3、批流混合集成

image.png


在实际的使用中往往需要流批混合的方式,以适用于分库分表、部分链路重做,新增库表等场景。小米选择使用 Flink CDC 任务来收集库级别的 Binlog 数据(按照表级别收集会对 MySQL 服务造成较大的压力)。将数据收集到消息队列后,再针对不同的收集场景,起不同的作业来进行转储。对于单表全量数据需要重做的场景(backfill),小米使用Hybrid Source分别读取 MySQL中的存量数据和消息队列中的增量数据。


image.png

另一种批流混合的数据集成是在调度层做到批流混合,主要运用于TiDB的Binlog收集场景。在支持 TiDB 的数据收集和转储时无法使用 Hybrid Source,因为 TiDB 的全量数据往往非常大,需要起大量并发能够加速全量数据的转储,而增量数据则只需要较小并发即可,因此使用Hybrid Source难以同时保证业务性能和资源使用效率。解决的方法是在全量数据部分使用 Flink SQL Batch 作业来完成,可以灵活调整并发且相对于实时作业处理效率更高,增量部分则以较小的并发转储即可。


未来规划

当前 Flink + Iceberg 的数据湖解决方案在小米已经初步落地,未来可以提升的空间依然非常大,小米会不断跟进社区,继续推进内部流批一体化的建设。

image.png

与此同时,小米会将 Flink SQL Batch 用于更加复杂的场景。当前 Flink SQL Batch 发挥的场景有限,主要运用于批量导出的场景,相信未来它会发挥更大的价值。  


其次,小米会跟进社区的 built in dynamic table,结合消息队列和数据湖,兼顾时效性和准确性,提升用户的体验。同时也会升级 Hybrid Source connector,更加灵活地对接其他系统。

相关文章
|
2月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
352 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
298 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
3月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1162 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
4月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
375 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
4月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
513 9
Apache Flink:从实时数据分析到实时AI
|
4月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
464 0
|
4月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
422 6
|
12月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
766 33
The Past, Present and Future of Apache Flink
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1577 13
Apache Flink 2.0-preview released

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多