《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(3)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(3)

《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(2) https://developer.aliyun.com/article/1228306



对于上述问题,我们提出了冷热关联分离的解决方案。假设关联两天前的数据是相对低频的且状态回滚不会超过两天,那么可以定义两天前的数据为冷数据,两天之内的数据为热数据。


image.png

如上图所示,左侧的 SQL 作业通过设置状态保留时长,只保留 T+0 和 T+1 这两天的热数据,而 T+2 及更久以前的冷数据则通过批任务每天从 Hive 同步到外存 KV 中。关联时,若状态中的热数据不存在,则再通过访问外存 KV 来关联冷数据。右侧是另外一个 SQL 作业需要关联相同的数据源,它与左侧的 SQL 作业共享外层 KV 中的冷数据。  


对于第一个痛点,因为状态控制在了两天内,SQL 作业上线时,关联数据初始化的数据量得到了控制。对于第二个痛点,因为两天前的大部分数据都保存在外层KV中,不同的 SQL 作业都可以查询外存 KV,从而可以节省大量内存资源。  


第2个问题是有状态 SQL 逻辑变更后状态如何恢复?FlinkSQL 支持有状态的增量计算,状态是增量计算的历史累计,实际上业务需要修改逻辑的情况很多。


image.png


上图右侧列出了一些常见的 SQL 变更情况,比如新增聚合指标、修改原指标口径、增加过滤条件、新增数据流关联、增加聚合维度等。举例来说,如果业务增加了更多服务维度,在数据产品上就需要扩展分析的维度,因此也需要修改 FlinkSQL 增加聚合维度。但是上述 SQL 逻辑变化后却不能从之前的状态恢复,因为历史状态对于变更后的 SQL 不能保证其完整性,即使恢复后也不能百分百保证后续计算的正确性。这种情况下,业务为了保证数据的正确性,需要从历史回溯重新计算,回溯的过程会导致线上断流,但业务又不希望牺牲太多的时效性。  


针对这个问题,美团给出了三种解决方案:  


解法 1:双链路切换。此解法的关键是再搭建一条相同的实时链路作为备用链路,当变更有状态 SQL 时,可以在备用链路上做回溯,重新计算历史数据,回溯完成后先验证备用链路的结果数据,确保没问题后再在链路最下游的数据服务层切换读取的表,完成整个变更流程;


解法 2:旁路状态生成。与双链路切换不同点在于,这里变更的是链路上的单个作业,思路是临时启动一个旁路作业来回溯,构建出新逻辑的状态,验证数据完成后再重启线上作业,以此完成 SQL 和状态的同时切换;


解法 3:历史状态迁移,前两个方法的思路比较类似,都是基于历史数据重新计算,构建出新状态。但这个思路是基于历史状态迁移出新状态,这种方法构建出的新状态虽然不能保证完整性,但在某些情况下,业务也是可以接受的。  


上述三种方式各有优点,可以从普适性、资源成本、线上断流、等待时长四个维度来对以上三个解决方案进行横向比较。  


普适性是指在保证数据正确的前提下支持的 SQL 变更范围,前两个方法都是重新计算,状态是完整的,因此比方案 3 的普适性更高;


资源成本是指完成 SQL 变更所需要的额外 Flink 或 Kafka 资源,方法 1 需要构建整条链路,需要更多的 Flink 和 Kafka 资源,因此成本最高。


线上断流指的是在变更过程中导致下游数据延迟的时长,方法 1 是在数据服务层做切换,几乎没有断流;方法 2 的断流时长取决于作业从状态恢复的速度;方法 3 除了状态恢复,还需要考虑状态迁移的速度;


等待时长指的是完成整个变更流程需要的时间,前两个方法都需要重新计算,因此比方法 3 的等待时间更长。  



《Apache Flink 案例集(2022版)》——2.数据分析——美团-Flink 的实时数仓平台建设(4) https://developer.aliyun.com/article/1228303

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
相关文章
|
8天前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
186 1
Flink CDC + Hologres高性能数据同步优化实践
|
1月前
|
SQL 消息中间件 Kafka
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
539 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
12天前
|
SQL 消息中间件 Serverless
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
2月前
|
SQL 监控 关系型数据库
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
454 25
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
|
2月前
|
存储 消息中间件 OLAP
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
70 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
|
12天前
|
存储 大数据 数据处理
您有一份 Apache Flink 社区年度报告请查收~
您有一份 Apache Flink 社区年度报告请查收~
|
3月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
439 33
The Past, Present and Future of Apache Flink
|
5月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1098 13
Apache Flink 2.0-preview released
|
5月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
194 3
|
6月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多