《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3)

《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(2) https://developer.aliyun.com/article/1228279



2. 建设湖仓一体

image.png


基于 Hive 的数据仓库主要存在以下几个痛点:  


首先是时效性,目前基于 Hive 的数仓绝大部分是 t+1,数据产生后至少要一个小时才能在数仓中查询到。随着公司整体技术能力的提升,很多场景对数据的时效性要求越来越高,比如需要准实时的样本数据来支持模型训练,需要准实时的多维分析来帮助排查点击率下降的根因;


其次是 Hive 2.0 无法支持 upsert 需求,业务库数据入仓只能 t+1 全量同步,数据修正成本很高,同时不支持 upsert 意味着存储层面无法实现批流一体;


最后 Hive 的 Schema 属于写入型,一旦数据写入之后 Schema 就难以变更。  


经过一番选型,汽车之家决定选择基于 Iceberg 来构建湖仓一体架构,如下图所示:


image.png


最底层是基于 Hive Metastore 来统一 Hive 表和 Iceberg 表的元数据,基于 HDFS 来统一 Hive 表和Iceberg 表的存储,这也是湖仓一体的基础。  


往上一层是表格式,即 Iceberg 对自身的定位:介于存储引擎和计算引擎之间的开放的表格式。再往上是计算引擎,目前 Flink 主要负责数据的实时入湖工作, Spark 和 Hive 作为主要的产品引擎。最上面是计算平台,Autostream 支持点击流和日志类的数据实时入湖,AutoDTS 支持关系型数据库中的数据实时入湖,离线平台与 Iceberg 做了集成,支持像使用 Hive 表一样来使用 Iceberg,在提升数据时效性的同时,尽量避免增加额外的使用成本。


image.png


通过Flink+Iceburg+Hive实现湖仓一体架构,流量、内容、线索主题的数据时效性得到了大幅提升,从之前的天级/小时级提升到 10 分钟以内,数仓核心任务的 SLA 提前两个小时完成;同时特征工程得以提效,在不改变原先架构的情况下,模型训练的实效性从天级/小时级提升到 10 分钟级;从业务视角来看,大幅提升了数据分析的效率体验和机器学习推荐的实效。  


3. PyFlink实践

image.png

引入 PyFlink主要是想把 Flink 强大的实时计算能力输出给人工智能团队。人工智能团队由于技术本身的特点,大部分开发人员都是基于 Python 语言开发,而 Python 本身的分布式和多线程支持比较弱,他们需要一个能快速上手又具备分布式计算能力的框架,来简化他们日常的程序开发和维护。  


通过集成 PyFlink 汽车之家实现了对 Python 生态的基础支持,解决了 Python 用户难以开发实时任务的痛点。同时也可以方便地将之前部署的单机程序迁移到实时计算平台上,享受 Flink 强大的分布式计算能力。


未来规划

image.png

未来,汽车之家会持续优化计算资源,让计算资源的利用更加合理化,进一步降低成本。一方面充分利用自动伸缩容的功能,扩展伸缩容策略,实现实时离线计算资源的混部,利用实时离线错峰计算的优势进一步降低实时计算的服务器成本。同时团队也会尝试优化 Yarn 的细粒度资源调度,比如分配给 jobmanager 和 taskmanager 少于一核的资源,做更精细化的优化。  

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
394 33
The Past, Present and Future of Apache Flink
|
4月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1023 13
Apache Flink 2.0-preview released
|
4月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
172 3
|
2月前
|
机器学习/深度学习 数据采集 DataWorks
数据分析经典案例重现:使用DataWorks Notebook 实现Kaggle竞赛之房价预测,成为数据分析大神!
Python是目前当之无愧的数据分析第一语言,大量的数据科学家使用Python来完成各种各样的数据科学任务。本文以Kaggle竞赛中的房价预测为例,结合DataWorks Notebook,完成数据加载、数据探索、数据可视化、数据清洗、特征分析、特征处理、机器学习、回归预测等步骤,主要Python工具是Pandas和SKLearn。本文中仅仅使用了线性回归这一最基本的机器学习模型,读者可以自行尝试其他更加复杂模型,比如随机森林、支持向量机、XGBoost等。
|
2月前
|
DataWorks 数据挖掘 大数据
方案实践测评 | DataWorks集成Hologres构建一站式高性能的OLAP数据分析
DataWorks在任务开发便捷性、任务运行速度、产品使用门槛等方面都表现出色。在数据处理场景方面仍有改进和扩展的空间,通过引入更多的智能技术、扩展数据源支持、优化任务调度和可视化功能以及提升团队协作效率,DataWorks将能够为企业提供更全面、更高效的数据处理解决方案。
|
3月前
|
运维 数据挖掘 网络安全
场景实践 | 基于Flink+Hologres搭建GitHub实时数据分析
基于Flink和Hologres构建的实时数仓方案在数据开发运维体验、成本与收益等方面均表现出色。同时,该产品还具有与其他产品联动组合的可能性,能够为企业提供更全面、更智能的数据处理和分析解决方案。
|
4月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
329 0
|
6月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
109 2
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
306 4
|
6月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
120 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多