《Apache Flink 案例集(2022版)》——2.数据分析——蔚来汽车-Apache Flink 在蔚来汽车的应用(下)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——2.数据分析——蔚来汽车-Apache Flink 在蔚来汽车的应用(下)

《Apache Flink 案例集(2022版)》——2.数据分析——蔚来汽车-Apache Flink 在蔚来汽车的应用(上) https://developer.aliyun.com/article/1228268



业务场景

1 .实时看板

image.png

上图是实时看板业务的架构图,主要分为三层。第一层是数据层即 Kafka 的实时数仓,通过 Flink 对这些数据进行处理后将它们实时地推到后台,后台再实时地把它们推到前端。后台与前端的交互是通过 web socket 来实现的,这样就可以做到所有的数据都是实时推送。  


2. CDP(Customer Data Platform)

image.png


CDP 是一个运营平台,负责偏后台的工作。蔚来汽车的 CDP 需要存储一些数据,比如属性的数据存在 ES 里、行为的明细数据包括统计数据存在 Doris 里、任务执行情况存在 TiDB。其中主要有两个实时场景的应用:第一个是属性需要实时更新,否则可能造成运营效果不佳;第二个是行为的聚合数据有时候也需要实时更新。


3. 实时数仓

image.png


上图是蔚来汽车目前的实时数仓架构图。它整体上与离线数仓非常相似,也是有ODS层、DWD 层、DWS 层和 Application 层。不同之处在于它有一个维度层 (DIM 层),里面有很多不同的存储介质,维度信息可以放在 TiDB,并通过 AIO 的方式访问维度表;也可以放在 Hive,用 Temporal Join 的方式去进行关联;有一些数据是一直在变化的,或者需要做一些基于时间的关联,可以把数据放到 Kafka 里,然后用 Broadcast 或者 Temporal Join 去进行关联。


未来规划

实时数据的场景越来越多,大家对实时数据的需求也越来越多,未来蔚来汽车会继续进行实时数据方面的探索。目前在流批一体的实时和离线存储统一上已经有了一些产出,后续也会在这方面投入更多精力,包括 Flink CDC 是否真的可以减少链路,提高响应效率等。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
19天前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
294 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
6月前
|
SQL 存储 人工智能
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
814 1
Apache Flink 2.0.0: 实时数据处理的新纪元
|
6月前
|
存储 运维 监控
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
本文总结了阿里妈妈数据技术专家陈亮在Flink Forward Asia 2024大会上的分享,围绕广告业务背景、架构设计及湖仓方案演进展开。内容涵盖广告生态运作、实时数仓挑战与优化,以及基于Paimon的湖仓方案优势。通过分层设计与技术优化,实现业务交付周期缩短30%以上,资源开销降低40%,并大幅提升系统稳定性和运营效率。文章还介绍了阿里云实时计算Flink版的免费试用活动,助力企业探索实时计算与湖仓一体化解决方案。
800 3
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
|
6月前
|
存储 大数据 数据处理
您有一份 Apache Flink 社区年度报告请查收~
您有一份 Apache Flink 社区年度报告请查收~
|
1月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
369 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
10月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3242 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
10月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
428 56

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多