python数据分析表格文档Excel数据分析器统计源码

简介: python数据分析表格文档Excel数据分析器统计源码

在PyCharm中运行《Excel数据分析师》即可进入如图1所示的系统主界面。在该界面中,通过顶部的工具栏可以选择所要进行的操作。

6c6dae7cba7a7141960443dbf10f3b2.png


具体的操作步骤如下:

(1)导入Excel。单击工具栏中的“导入Excel”按钮,打开文件对话框选择文件夹,如XS1文件夹,系统将遍历该文件夹中的*.xls文件,并且将文件添加到列表区,效果如图2所示。

abe76fb778faaedaf88fc5cd554b585.png


(2)提取列数据。单击工具栏中的“提取列数据”按钮,提取买家会员名、收货人姓名、联系手机和宝贝标题,效果如图3所示。提取后的数据将保存在程序所在目录下的mycell.xls文件中。


cef4765a10bdb8c2453bb2cc87b8e91.png

说明:“输出选项”可以选择数据分析结果要保存的位置,默认是程序所在文件夹。

(3)定向筛选。单击工具栏中的“定向筛选”按钮,筛选“零基础学Python”的用户信息,效果如图4所示。筛选后的数据将保存在程序所在目录下的mycell.xls文件中。

3893f94cb7f3a3b7ba851c745560c10.png


(4)多表合并。单击工具栏中的“多表合并”按钮,将列表中的Excel表全部合并成一个表,合并结果将保存在程序所在目录下的mycell.xls文件中。

(5)多表统计排行。单击工具栏中的“多表统计排行”按钮,按“宝贝标题”进行分组统计数量并进行排序,效果如图5所示。统计排行结果将保存在程序所在目录下的mycell.xls文件中。



(5)生成图表,该功能主要分析产品的贡献度。单击工具栏中的“生成图表”按钮,将全彩系列图书2018年上半年收入占80%的产品以图表形式展示,效果如图6所示。


ddf029e1f709b0e572f70ffee423cad.png

部分源码如下,其余完整详见下载。


#自定义函数SaveExcel用于保存数据到Excel
def SaveExcel(df,isChecked):
    # 将提取后的数据保存到Excel
    if (isChecked):
        writer = pd.ExcelWriter('mycell.xls')
    else:
        global temproot
        writer = pd.ExcelWriter(temproot + '/mycell.xls')
    df.to_excel(writer, 'sheet1')
    writer.save()
class Ui_MainWindow(QtWidgets.QWidget):
    def setupUi(self, MainWindow):
        MainWindow.setObjectName("MainWindow")
        MainWindow.resize(838, 596)
        self.centralwidget = QtWidgets.QWidget(MainWindow)
        self.centralwidget.setObjectName("centralwidget")
        self.list1 = QtWidgets.QListView(self.centralwidget)
        self.list1.setGeometry(QtCore.QRect(1, 1, 171, 401))
        self.list1.setObjectName("list1")
        self.text1 = QtWidgets.QTextEdit(self.centralwidget)
        self.text1.setGeometry(QtCore.QRect(110, 450, 631, 21))
        sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Fixed)
        sizePolicy.setHorizontalStretch(0)
        sizePolicy.setVerticalStretch(0)
        sizePolicy.setHeightForWidth(self.text1.sizePolicy().hasHeightForWidth())
        self.text1.setSizePolicy(sizePolicy)
        self.text1.setObjectName("text1")
        self.viewButton = QtWidgets.QPushButton(self.centralwidget)
        self.viewButton.setGeometry(QtCore.QRect(746, 450, 75, 23))
        self.viewButton.setObjectName("viewButton")
        self.textEdit = QtWidgets.QTextEdit(self.centralwidget)
        self.textEdit.setGeometry(QtCore.QRect(170, 0, 661, 401))
        #水平滚动条
        self.textEdit.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn)
        self.textEdit.setObjectName("textEdit")
        MainWindow.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(MainWindow)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 838, 23))
        self.menubar.setObjectName("menubar")
        MainWindow.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(MainWindow)
        self.statusbar.setObjectName("statusbar")
        MainWindow.setStatusBar(self.statusbar)
        self.toolBar = QtWidgets.QToolBar(MainWindow)
        self.toolBar.setEnabled(True)
        sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed)
        sizePolicy.setHorizontalStretch(0)
        sizePolicy.setVerticalStretch(0)

50

相关文章
|
7月前
|
SQL 分布式计算 数据挖掘
从Excel到高级工具:数据分析进阶指南
从Excel到高级工具:数据分析进阶指南
335 54
|
6月前
|
Python
掌握Python装饰器:轻松统计函数执行时间
掌握Python装饰器:轻松统计函数执行时间
411 76
|
9月前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
241 4
|
数据处理 索引 Python
用Python实现数据录入、追加、数据校验并生成表格
本示例展示了如何使用Python和Pandas库实现学生期末考试成绩的数据录入、追加和校验,并生成Excel表格。首先通过`pip install pandas openpyxl`安装所需库,然后定义列名、检查并读取现有数据、用户输入数据、数据校验及保存至Excel文件。程序支持成绩范围验证,确保数据准确性。
493 14
|
10月前
|
SQL 人工智能 数据可视化
数据团队必读:智能数据分析文档(DataV Note)五种高效工作模式
数据项目复杂,涉及代码、数据、运行环境等多部分。随着AI发展,数据科学团队面临挑战。协作式数据文档(如阿里云DataV Note)成为提升效率的关键工具。它支持跨角色协同、异构数据处理、多语言分析及高效沟通,帮助创建知识库,实现可重现的数据科学过程,并通过一键分享报告促进数据驱动决策。未来,大模型AI将进一步增强其功能,如智能绘图、总结探索、NLP2SQL/Python和AutoReport,为数据分析带来更多可能。
600 142
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
321 2
|
7月前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
1979 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
9月前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
1222 2
|
10月前
|
数据可视化 数据挖掘 BI
表格软件推荐:为何选择VeryReport让数据分析和报表生成更高效?
表格软件推荐:为何选择VeryReport让数据分析和报表生成更高效?
|
9月前
|
SQL 数据挖掘 大数据
Excel 后,我们需要怎样的数据分析软件
在现代商业中,数据分析至关重要,但传统BI工具和编程语言如Python、SQL等各有局限。Excel虽交互性强,但面对复杂计算和大数据时力不从心。esProc Desktop作为后Excel时代的数据分析神器,采用SPL语言,具备强大的表格计算能力和天然的大数据支持,可显著降低复杂计算难度。其强交互性、简短代码和内嵌Excel插件功能,让业务人员轻松完成多步骤交互式计算,是理想的数据分析工具。现提供免费使用及丰富学习资源。

推荐镜像

更多