《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(2)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(2)

《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink  在 众安保险金融业务的应用(1) https://developer.aliyun.com/article/1228201



应用场景

1. 智能营销

image.png


营销平台的最下层是数据源层,包括金融业务数据、保险业务数据、用户行为数据、第三方平台的数据和运营结果数据。离线数据通过 ETL 的方式进入离线数仓,实时数据通过 Flink 的方式进入实时数仓。  


实时离线数仓之上是标签服务层,平台有对离线/实时的标签管理功能,同时平台会对这些标签进行治理管控,比如数据权限的管控,此外,还有标签数据的监控,能够及时发现标签数据的异常,准确掌握标签使用情况的分析统计。  


标签层之上是标签应用层,众安保险有营销 AB 实验室和流量 AB 实验室,它们之间的差异在于,营销 AB 主要居于客群进行营销,无论是基于规则进行客群圈选的静态客群还是通过 Flink 接入的实时客群,都会对这些客群进行流程化的营销和智能的触达。而流量 AB 实验室是基于标签的数据服务能力,用于 APP 端千人千面的个性化推荐。平台还提供了客群画像的分析功能,可以快速找到相似客群和客群的历史营销的数据效果情况,能够更好地协助运营对于客群的甄选和营销。  


通过营销 AB 和流量 AB 实验之后,会有一个效果分析服务来进行实时效果回收,通过效果分析可以及时辅助运营团队进行快速的策略调整。


image.png


目前营销平台的标签总数已经达到 500 个以上,营销任务执行数量每天会有 200 万左右,流量 AB 每天会有 2000 万以上的调用量,主要是给前端提供了资源位的个性化显示和千人千面的业务场景。  


整个营销平台的特征可以总结为三点:  


实时画像。通过定制标准化的实时事件、数据结构,利用 Flink 实时计算的能力,实现自动化的实时标签接入;


智能营销策略。可以让用户直接在营销平台上进行组件化的营销流程的配置,提供丰富的时间策略,还有各种智能的营销通道,同时也支持灵活的、多分支的业务流转,使用一致性哈希分流算法进行用户的 AB 实验;


实时分析。对营销成效进行实时分析,使用 Flink 实现实时效果回收。通过漏斗的分析和业务指标的成效分析能力,能够更好地赋能给营销业务。  



《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink  在 众安保险金融业务的应用(3) https://developer.aliyun.com/article/1228198

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
19天前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
294 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
5月前
|
存储 SQL 关系型数据库
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
拉卡拉早期基于 Lambda 架构构建数据系统面临存储成本高、实时写入性能差、复杂查询耗时久、组件维护复杂等问题。为此,拉卡拉选择使用 Apache Doris 替换 Elasticsearch、Hive、Hbase、TiDB、Oracle / MySQL 等组件,实现了 OLAP 引擎的统一、查询性能提升 15 倍、资源减少 52% 的显著成效。
206 6
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
|
6月前
|
SQL 存储 人工智能
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
814 1
Apache Flink 2.0.0: 实时数据处理的新纪元
|
6月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
探索Flink动态CEP:杭州银行的实战案例
215 5
|
9月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
1113 2
探索Flink动态CEP:杭州银行的实战案例
|
6月前
|
存储 大数据 数据处理
您有一份 Apache Flink 社区年度报告请查收~
您有一份 Apache Flink 社区年度报告请查收~
|
9月前
|
数据处理 数据安全/隐私保护 流计算
Flink 三种时间窗口、窗口处理函数使用及案例
Flink 是处理无界数据流的强大工具,提供了丰富的窗口机制。本文介绍了三种时间窗口(滚动窗口、滑动窗口和会话窗口)及其使用方法,包括时间窗口的概念、窗口处理函数的使用和实际案例。通过这些机制,可以灵活地对数据流进行分析和计算,满足不同的业务需求。
1017 27
|
Java 应用服务中间件 Apache
Apache 与tomcat实现分布式应用部署
一:原理 tomcat是一个web应用服务器,能够解析静态文件和动态文件(如:html、jsp、servlet等);apache是一个web server,能够解析静态文件。Tomcat作为一个独立的web服务器是可以使用的,但是它对静态文件的解析能力不如apache,所以就产生现在的web应用的分布式部署,apache+tomcat。 两者之间的通信通过workers配置(由tomc
2236 0
|
9月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
682 33
The Past, Present and Future of Apache Flink

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多