《Apache Flink 案例集(2022版)》——3.机器学习——奇安信-如何设计信息安全领域的实时安全基线引擎(1)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——3.机器学习——奇安信-如何设计信息安全领域的实时安全基线引擎(1)

作者:覃永靖


用户背景

奇安信集团,是中国网络安全公司之一,专门为政府、企业,教育、金融等机构和组织提供企业级网络安全技术、产品和服务,已覆盖90%以上的中央政府部门、中央企业和大型银行,已在印度尼西亚、新加坡、加拿大、中国香港等国家和地区开展了安全业务。


业务需求

近 10 年来,大数据技术发展日新月异。安全分析场景和方法也更新换代。  


安全领域主要有三个特点:  


快速响应。因为安全事件经常是突发的,比如漏洞的披露、病毒的爆发等常常是在很短的时间突然发生,所以需要以非常有效和简单易用的方式来快速地对突发的安全事件进行处理,能第一时间响应客户的需求、应对各类安全事件;


场景定制。因为安全分析和常规的大数据分析场景会有一些不同,安全分析检测的是异常而不是正常,还有领域独有的一些需求,所以这里会涉及到很多领域定制开发的需求;


资源受限。相比常规互联网大数据平台使用方式,安全分析可使用的资源会有很多的限制,通常用户受限于预算和资源的限制,会尽可能地压缩和优化可用计算和存储资源规模,这会导致大量的组件采用混合部署的方式,且将来硬件和集群扩展成本也很高,流程很长。  


在实时数据安全方面,一共有五点需求:  


第一是需要实时分析。安全检测对时延要求严格,攻防双方抢时间差,需要能第一时间检测到异常。同时由于是安全事件驱动,要求解决方案上线快,响应及时,能在最短时间形成防护能力;


第二是需要提供非常丰富的分析语义。安全检测的场景通常比较复杂的,需要提供丰富的安全分析语义,覆盖大部分安全分析场景;


第三是能灵活部署。因为客户的环境非常复杂,需要能支持各种大数据平台,比如客户自建的,或者是他购买的一些云平台,并且还要有最大的版本兼容性;


第四是需要实现最小的资源使用。支持部署从一到几十甚至上百台节点的集群,在资源占用尽可能小的同时支持大规模,比如上千条分析规则或安全基线同时运行;


最后是运行稳定。安全产品部署在客户侧,需要 7×24 小时不间断运行,需要提供极高的运行稳定性,尽可能减少人工维护和介入,让客户无感知。  


传统的安全分析方法一般是基于先验知识,采用基于特征检测技术来进行异常检测,一般是通过分析检测对象的数据或日志特点,然后人工归纳和统计出可检测特征,建立安全模型,比如安全规则、威胁情报等。这种方式比较简单和可靠,可以很好的应对已有的攻击方法,但是它对未知的没有对应检测特征的攻击方法则不能有效的进行检测。


《Apache Flink 案例集(2022版)》——3.机器学习——奇安信-如何设计信息安全领域的实时安全基线引擎(2) https://developer.aliyun.com/article/1228164




相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
2月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
352 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
298 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
4月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
513 9
Apache Flink:从实时数据分析到实时AI
|
4月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
464 0
|
3月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1161 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
8月前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
815 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
4月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
422 6
|
4月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
375 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
9月前
|
SQL 存储 人工智能
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
1034 1
Apache Flink 2.0.0: 实时数据处理的新纪元

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多