《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(2)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(2)

《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(1) https://developer.aliyun.com/article/1228153



生产实践

风控业务专员在产品界面通过简单配置即可实时、动态地发布风控规则,更加可以在线地对规则进行更新、删除。其中规则模型分为统计型规则和序列型规则。相同模型支持子规则的嵌套,不同模型之间可以通过与、或关系进行组合。

image.png


以下为规则组合中需要动态配置能力的配置项:  


1.分组字段。

不同字段分组、多字段分组的情况在风控规则的应用中非常常见。有如下规则样例:

以用户 ID 分组:"用户的下单次数";

以用户 ID、区域 ID 作为分组:"用户同一段时间内不同区域的订单数"。


2. 聚合函数。

聚合函数包括业务常用的聚合逻辑,规则引擎依赖 Flink 内置丰富的累加器,并在 Accumulator 接口的基础上进行了根据需求场景的自定义实现。样例规则如下:  

A 门店近 30 分钟独立消费用户数小于 100;

B 门店新客消费金额大于 300。  


3. 窗口周期。

窗口周期也即每个窗口的大小,如业务方可能希望在持续 30 分钟的秒杀活动周期内运行规则,或者希望重点关注异常时段。

每 30 分钟时间窗口内,单个用户发起超过 20 笔未支付订单;

凌晨 1 点至 3 点,单个用户支付订单数超 50 笔。  


4. 窗口类型。

为了面对不同的业务需求,我们将业务规则中常见的窗口类型集成到规则引擎内部。其中包括滑动窗口、累计窗口、甚至是无窗口(即时触发)。  


5. 聚合前的过滤条件:

只对"下单事件"进行统计;

过滤门店"虚拟用户"。  


6. 聚合后的过滤条件:

用户 A 在 5 分钟内下单次数 "超过 150 次";

用户 B 在 5 分钟内购买金额 "超过 300 元"。  


7. 计算表达式。

风控规则的字段口径通常是需要组合计算的,我们在表达式计算和编译中集成了更轻便和更高性能的 Aviator 表达式引擎。规则样例如下:

应收金额大于 150 元(应收金额 = 商品金额合计 +运费 + 优惠合计);

通过 POS 端支付的应收金额大于 150 元。  


8. 行为序列。

行为序列其实也是事件与事件之间的组合,他打破了以往风控规则只能基于单事件维度描述事实的壁垒,在事件与事件之间的事实信息也将被规则引擎捕捉。规则样例如下:

用户 A 在 5 分钟内依次做了点击、收藏、加购;

用户 B 在 30 分钟前领了优惠券,但是没有下单。




《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(3) https://developer.aliyun.com/article/1228145 

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
19天前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
294 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
5月前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
4月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
9月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
682 33
The Past, Present and Future of Apache Flink
|
6月前
|
SQL 存储 人工智能
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
814 1
Apache Flink 2.0.0: 实时数据处理的新纪元
|
6月前
|
数据采集 人工智能 API
生物医药蛋白分子数据采集:支撑大模型训练的技术实践分享
作为生物信息学领域的数据工程师,近期在为蛋白质相互作用预测AI大模型构建训练集时,我面临着从PDB、UniProt等学术数据库获取高质量三维结构、序列及功能注释数据的核心挑战。通过综合运用反爬对抗技术,成功突破了数据库的速率限制、验证码验证等反爬机制,将数据采集效率提升4倍,为蛋白质-配体结合预测模型训练提供了包含10万+条有效数据的基础数据集,提高了该模型预测的准确性。
192 1
|
6月前
|
机器学习/深度学习 人工智能 边缘计算
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
|
7月前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
357 3
|
9月前
|
存储 SQL 人工智能
Apache Flink 2.0:Streaming into the Future
本文整理自阿里云智能高级技术专家宋辛童、资深技术专家梅源和高级技术专家李麟在 Flink Forward Asia 2024 主会场的分享。三位专家详细介绍了 Flink 2.0 的四大技术方向:Streaming、Stream-Batch Unification、Streaming Lakehouse 和 AI。主要内容包括 Flink 2.0 的存算分离云原生化、流批一体的 Materialized Table、Flink 与 Paimon 的深度集成,以及 Flink 在 AI 领域的应用。
1286 13
Apache Flink 2.0:Streaming into the Future

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多