《Apache Flink 案例集(2022版)》——4.云原生——京东-Flink on K8s 在京东的持续优化实践(上)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——4.云原生——京东-Flink on K8s 在京东的持续优化实践(上)

作者:付海涛


用户背景

京东集团定位于“以供应链为基础的技术与服务企业”,目前业务已涉及零售、数字科技、物流、技术服务、健康、保险、物流地产、云计算、AI和海外等领域,其中核心业务为零售、数字科技、物流、技术服务四大板块。


平台建设

在 2017 年左右,京东实时计算是多个引擎并存的,包括 Storm、Spark Streaming 以及正在引入的新一代计算引擎 Flink,其中 Storm 集群运行在物理机上,Spark Streaming 运行在 YARN 上,不同的运行环境导致部署和运营成本特别高,且资源利用有一定浪费,所以迫切需要一个统一的集群资源管理和调度系统来解决这个问题。  


经过一系列的尝试、优化和性能对比后,京东最终选择了K8s 来解决这些问题。K8s 是目前业内非常流行的容器编排和管理平台,它可以很方便地管理成千上万的容器化应用,易于部署和运维;很容易做到混合部署,将不同负载的服务比如在线服务、机器学习、流批计算等混合在一起,获得更好的资源利用;此外,它还具有天然容器隔离、原生弹性自愈的能力,可以提供更好的隔离性与安全性。  


京东的实时计算平台容器化历程如下:  


2018 年初,实时计算平台开始全面容器化改造;


到 2018 年 6 月,已经有 20% 的任务运行在 K8s 上,从运行结果看,无论是资源的共享能力、还是业务处理能力,以及敏捷性和效率方面都获得了较大提升,初步达到了预期的效果;


到 2019 年 2 月实现了实时计算全部容器化; 此后至今,京东一直在弹性伸缩、服务混部、任务快速恢复能力建设等方面进行Flink on K8s的优化和实践。


image.png

京东 Flink on K8s 的平台架构如上图,最下面是物理机和云主机,之上是 K8s,它采用京东自研的 JDOS 平台,基于标准的 K8s 进行了许多定制优化,使之更适应京东生产环境的实际情况。JDOS 大部分运行在物理机上,少部分是在云主机上。再往上是基于社区版 Flink 进行深度定制化后的 Flink 引擎。  


最上面就是京东的实时计算平台 JRC,支持 SQL 作业和 jar 包作业,提供高吞吐、低延迟、高可用、弹性自愈易用的一站式海量流批数据计算能力,支持丰富的数据源和目标源,具备完善的作业管理、配置、部署、日志监控和自运维的功能,提供备份回滚和一键迁移的功能。  


京东实时计算平台服务于京东内部非常多的业务线,主要应用场景包括实时数仓,实时大屏、实时推荐、实时报表、实时风控和实时监控等。


生产实践

最开始京东的容器化方案采用的是基于 K8s Deployment 部署的Standalone Session集群,这是资源静态分配的模式,需要用户在创建的时候就决定好所需要的管理节点 Jobmanager 的个数和规格 (包括 CPU 的核数、内存和磁盘的大小等)、运行节点 TaskManager 的个数和规格 (包括 CPU、内存和磁盘大小等),以及TaskManager包含的Slot个数。创建集群后,JRC平台通过 K8s 客户端向K8s Master发出请求,创建JobManager的Deployment,这里使用 ZK 保证高可用,使用 HDFS 和 OSS 进行状态存储,集群创建完成后就可以提交任务了。  


在实践的过程中发现该方案存在一些不足:它需要业务提前预估出所需要的资源,对业务不太友好,无法满足灵活多变的业务场景。比如对一些复杂拓扑或者一个集群跑多个任务的场景,业务很难预先精准确定出所需要资源,这时候一般都会先创建出一个较大的集群,这样就会带来一定的资源浪费。在任务运行的过程中,也没有办法根据任务的运行情况,按需进行资源的动态伸缩。  

image.png


于是京东对容器化方案进行了升级,支持弹性资源模式。这是采用资源按需分配的方式,如上图所示。它需要用户在创建时指定好所需要管理节点 JobManager 的个数和规格,以及运行节点TaskManager的规格,而TaskManager的个数可以不指定。点击创建集群后,JRC平台会通过K8s客户端向K8s Master发出请求,创建JobManager的Deployment以及可选地预创建指定数量TaskManager Pod。  


平台提交任务后,由 JobMaster 通过 JDResourceManager 向 JRC 平台发出申请资源的 rest 请求,然后平台向K8s Master动态申请资源去创建运行askManager 的Pod。在运行过程中,如果发现某个TaskManager长时间空闲,可以根据配置动态释放资源。这里通过平台与K8s交互进行资源的创建和销毁,主要是为了保证计算平台对资源的管控,同时避免了集群配置和逻辑变化对镜像的影响;通过支持用户配置TaskManager个数进行资源的预分配,可以做到与资源静态分配同样快速的任务提交速度;同时通过定制资源分配策略,可以做到兼容原有slot分散分布的均衡调度。


image.png


在 Flink on K8s 的环境中,日志和监控指标是非常重要的,它可以辅助观察整个集群、容器、任务的运行情况,根据日志和监控快速定位问题并及时处理。  


日志采集采用京东的 Logbook 服务,它的基本机制是在每个 Node 上会运行一个 log agent,用于采集指定路径的日志;然后 Jobmanager 或 Taskmanager 会按照指定规则输出日志到指定目录,之后日志就会被自动采集到 Logbook 系统;最后可以通过计算平台进行实时日志和历史日志的检索和查询。

image.png


接下来是容器网络的性能问题。一般来说虚拟化的东西都会带来一定的性能损耗,容器网络作为容器虚拟化的一个重要组件,相比物理机网络来说,不可避免地会出现一些性能的损耗。性能的下降程度根据网络插件的不同、协议类型和数据包的大小会有所不同。  


此外,网络损耗对于 checkpoint 的快慢影响也很大。根据实践对比测试,网络模式不同的情况下,同样的环境下运行同样的任务,采用容器网络任务的 checkpoint 时长比使用主机网络慢了一倍以上。那么怎么解决这个容器网络的性能问题?  


一是可以根据机房环境选择合适的网络模式:比如对于京东一些旧的机房,容器网络性能下降特别明显,而且网络的架构也不能升级,采用了主机网络 (如上图所示,在 pod yaml 文件中配置 hostNetwork=true) 来避免损耗的问题,虽说这不太符合 K8s 的风格,但需要根据条件做个权衡;而对于新的机房,由于基础网络的性能提升以及采用了新的高性能网络插件,性能损耗相比主机网非常小,就采用了容器网;  


二是尽量不要使用异构网络环境,避免 K8s 跨机房,同时适当调整集群网络的相关参数,增加网络的容错能力。比如可以适当调大akka.ask.timeout 和taskmanager.network.request-backoff.max 两个参数。


image.png




3. 智能运维:支持对任务进行智能诊断,并自适应调整运行参数,实现作业的资质,降低用户调优和平台运维的成本;  


4. Flink AI 的支持:人工智能应用场景中,Flink 在包括特征工程、在线学习、资源预测等方面都有一些独特的优势,后续京东也将在这些场景从平台层面进行探索和实践。


《Apache Flink 案例集(2022版)》——4.云原生——京东-Flink on K8s 在京东的持续优化实践(下):https://developer.aliyun.com/article/1228056


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
22天前
|
Cloud Native 持续交付 开发者
云原生技术在现代企业中的应用与实践####
本文深入探讨了云原生技术的核心概念及其在现代企业IT架构转型中的关键作用,通过具体案例分析展示了云原生如何促进企业的敏捷开发、高效运维及成本优化。不同于传统摘要仅概述内容,本部分旨在激发读者对云原生领域的兴趣,强调其在加速数字化转型过程中的不可或缺性,为后续详细论述奠定基础。 ####
|
3天前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
236 2
探索Flink动态CEP:杭州银行的实战案例
|
12天前
|
Cloud Native 安全 Java
铭师堂的云原生升级实践
铭师堂完整经历了云计算应用的四个关键阶段:从”启动上云”到”全量上云”,再到”全栈用云”,最终达到”精益用云”。通过 MSE 云原生网关的落地,为我们的组织带来了诸多收益,SLA 提升至100%,财务成本降低67%,算力成本降低75%,每次请求 RT 减少5ms。
铭师堂的云原生升级实践
|
11天前
|
Cloud Native 安全 Java
杭州铭师堂的云原生升级实践
在短短 2-3 年间,杭州铭师堂完整经历了云计算应用的四个关键阶段:从“启动上云”到“全量上云”,再到“全栈用云”,最终达到“精益用云”。也从云计算的第一次浪潮,迈过了第二次浪潮,顺利的进入到了 第三次浪潮 AI + 云。
|
11天前
|
Cloud Native
邀您参加云原生高可用技术沙龙丨云上高可用体系构建:从理论到实践
云原生高可用技术专场,邀您从理论到实践一起交流,探索云上高可用体系构建!
|
18天前
|
流计算 开发者
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
|
22天前
|
Cloud Native API 持续交付
云原生架构下的微服务治理策略与实践####
本文旨在探讨云原生环境下微服务架构的治理策略,通过分析当前面临的挑战,提出一系列实用的解决方案。我们将深入讨论如何利用容器化、服务网格(Service Mesh)等先进技术手段,提升微服务系统的可管理性、可扩展性和容错能力。此外,还将分享一些来自一线项目的经验教训,帮助读者更好地理解和应用这些理论到实际工作中去。 ####
36 0
|
24天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
22天前
|
Kubernetes Cloud Native 微服务
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
|
1月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
44 3

相关产品

  • 实时计算 Flink版