《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(3)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(3)

《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(2) https://developer.aliyun.com/article/1227988



3. 数据安全和可靠性

image.png

近几年各个行业对数据安全的重视程度都越来越高,而大数据平台作为全集群数据的汇集地,对数据安全保障方面能力的建设就显得更加重要。大数据平台不但要存储很多数据,而且要提供的各式各样的数据访问方式。因此工行设计了一套全生命周期用数监控审计,类似于Ngnix的 access.log,主要用于事后追溯审计。当用户将数据拖回到本地时,平台会对数据加上水印,当有些数据被非正常公开后,就可以知晓数据泄漏的来源,同时对身份证、手机号、卡号等敏感字段,在返回时动态脱敏,比如 11 号的手机号中间几位都会变成 “********”。  


动态控权是因为有些数据访问权限控制粒度较细,工行实现了一套 SQL 改写引擎,在运行时对 SQL 进行解析,根据用户与表权限的对照关系,对 SQL 加上控制条件及脱敏函数,避免数据被越权访问。敏感数据识别是于专家规则或 ML 模型,自动识别海量数据中的敏感信息,并自动进行分类分级。同时,提醒管理员对敏感信息和分类分级结果进行核实确认。


image.png


工行在上海外高桥和嘉定两个数据中心建立了双活的大数据平台,通过系统级复制确保两边基础数据同步。对于部分关键业务会在两边同时运行,通过这种架构来确保关键业务的稳定。


image.png


上图是数据离线备份架构。金融机构在监管方面,对于数据存储可靠性的要求很高,所以,我们将 NBU 磁带备份系统和 Hadoop 以及 MPPDB 数据库的接口做了集成,实现了类似于 Oracle RMAN 的数据存储,增量备份的能力。  


4. 降本增效

image.png


根据国家监管的要求,大部分金融机构的大数据平台一般都以私有化的部署方式为主。在早期 Hadoop 技术刚出现时,大数据平台的设备选型以物理机 + 本地磁盘为主,尽可能实现本地计算。目前,主流的公有云大数据云服务以存算分离的架构为主。那么在建设金融机构大数据私有云时,到底应为物理机 + 本地磁盘为主,还是以存算分离架构为主呢?  


在公有云实现存算分离的最重要的原因就是资源的超分配。假设公有云上有 10 个租户,每个租户分别申请了一个 10 节点的集群,但由于这 10 个租户的资源使用都会存在错峰的情况,因此云平台只要准备 50 台设备就可以满足上述需求,并不需要实际准备 100 台设备,这就是超分配。  


私有云的大数据平台,一般会按业务线来划分集群。每个集群可能是数百台设备的规模,并不会出现大量的小租户、小集群,但集群间确实会存在一定错峰的情况。对于这种情况,工行更倾向于使用固定资源 + 弹性资源混合部署架构。如图所示,左边基于裸金属的固定资源池,用于满足日常的资源需求。右边基于容器的弹性资源池,用于满足特定事件发生时突增的需求。同时,这部分弹性资源池,可以在不同的集群之间,动态调配复用。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
348 33
The Past, Present and Future of Apache Flink
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
205 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
951 13
Apache Flink 2.0-preview released
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
144 3
|
1天前
|
SQL 存储 大数据
Flink 基础详解:大数据处理的强大引擎
Apache Flink 是一个分布式流批一体化的开源平台,专为大规模数据处理设计。它支持实时流处理和批处理,具有高吞吐量、低延迟特性。Flink 提供统一的编程抽象,简化大数据应用开发,并在流处理方面表现卓越,广泛应用于实时监控、金融交易分析等场景。其架构包括 JobManager、TaskManager 和 Client,支持并行度、水位线、时间语义等基础属性。Flink 还提供了丰富的算子、状态管理和容错机制,如检查点和 Savepoint,确保作业的可靠性和一致性。此外,Flink 支持 SQL 查询和 CDC 功能,实现实时数据捕获与同步,广泛应用于数据仓库和实时数据分析领域。
60 31
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
189 56
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
88 1
|
3月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
90 1
|
3月前
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
51 1
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多