《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(3)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(3)

《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(2) https://developer.aliyun.com/article/1227988



3. 数据安全和可靠性

image.png

近几年各个行业对数据安全的重视程度都越来越高,而大数据平台作为全集群数据的汇集地,对数据安全保障方面能力的建设就显得更加重要。大数据平台不但要存储很多数据,而且要提供的各式各样的数据访问方式。因此工行设计了一套全生命周期用数监控审计,类似于Ngnix的 access.log,主要用于事后追溯审计。当用户将数据拖回到本地时,平台会对数据加上水印,当有些数据被非正常公开后,就可以知晓数据泄漏的来源,同时对身份证、手机号、卡号等敏感字段,在返回时动态脱敏,比如 11 号的手机号中间几位都会变成 “********”。  


动态控权是因为有些数据访问权限控制粒度较细,工行实现了一套 SQL 改写引擎,在运行时对 SQL 进行解析,根据用户与表权限的对照关系,对 SQL 加上控制条件及脱敏函数,避免数据被越权访问。敏感数据识别是于专家规则或 ML 模型,自动识别海量数据中的敏感信息,并自动进行分类分级。同时,提醒管理员对敏感信息和分类分级结果进行核实确认。


image.png


工行在上海外高桥和嘉定两个数据中心建立了双活的大数据平台,通过系统级复制确保两边基础数据同步。对于部分关键业务会在两边同时运行,通过这种架构来确保关键业务的稳定。


image.png


上图是数据离线备份架构。金融机构在监管方面,对于数据存储可靠性的要求很高,所以,我们将 NBU 磁带备份系统和 Hadoop 以及 MPPDB 数据库的接口做了集成,实现了类似于 Oracle RMAN 的数据存储,增量备份的能力。  


4. 降本增效

image.png


根据国家监管的要求,大部分金融机构的大数据平台一般都以私有化的部署方式为主。在早期 Hadoop 技术刚出现时,大数据平台的设备选型以物理机 + 本地磁盘为主,尽可能实现本地计算。目前,主流的公有云大数据云服务以存算分离的架构为主。那么在建设金融机构大数据私有云时,到底应为物理机 + 本地磁盘为主,还是以存算分离架构为主呢?  


在公有云实现存算分离的最重要的原因就是资源的超分配。假设公有云上有 10 个租户,每个租户分别申请了一个 10 节点的集群,但由于这 10 个租户的资源使用都会存在错峰的情况,因此云平台只要准备 50 台设备就可以满足上述需求,并不需要实际准备 100 台设备,这就是超分配。  


私有云的大数据平台,一般会按业务线来划分集群。每个集群可能是数百台设备的规模,并不会出现大量的小租户、小集群,但集群间确实会存在一定错峰的情况。对于这种情况,工行更倾向于使用固定资源 + 弹性资源混合部署架构。如图所示,左边基于裸金属的固定资源池,用于满足日常的资源需求。右边基于容器的弹性资源池,用于满足特定事件发生时突增的需求。同时,这部分弹性资源池,可以在不同的集群之间,动态调配复用。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
352 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
298 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
4月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
513 9
Apache Flink:从实时数据分析到实时AI
|
4月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
464 0
|
3月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1161 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
4月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
422 6
|
4月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
375 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
12月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
766 33
The Past, Present and Future of Apache Flink
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1577 13
Apache Flink 2.0-preview released

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多