《Apache Flink 案例集(2022版)》——5.数字化转型——中信建设-Apache Flink 在国有大型银行智能运营场景下的应用(上)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——5.数字化转型——中信建设-Apache Flink 在国有大型银行智能运营场景下的应用(上)

作者:刘成龙、蔡跃


用户背景

中信建投证券成立于2005年11月2日,是经中国证监会批准设立的全国性大型综合证券公司。2016年12月9日,中信建投证券在香港联交所上市,股票代码6066.HK,公司A股于2018年6月20日在上交所主板上市。公司具有行业领先、均衡全能的投资银行业务,连续8年保持行业前3名;具有产品丰富且富有竞争力的财富管理业务,公司拥有900万证券经纪业务客户,托管证券市值4.31万亿元,位居行业第2名。累计完成超过8,000单股票及债券主承销项目,主承销金额超过5万亿元,累计完成股票基金交易量超过80万亿元。凭借高度的敬业精神与突出的专业能力,中信建投证券主要经营指标目前均位居行业前10名。


业务需求


在数字化转型过程中,无论是客户、监管还是证券公司内部都对数字化建设提出了更高的要求,从个性化定制的金融产品到多方协同的实时风控能力,乃至公司内客户、业务、资金等多方面的整合管理,都需要一条稳定的、安全的实时数据链路作为重要支撑,以保证各个条线能够具有对业务需求快速反应的能力,同时对业务需求和客户状态进行实时感知并实时给出智能化、差异化、个性化的反馈,为客户提供更优质、更高效、更主动、更安全的服务。  


此外,由于金融行业涉及的业务领域众多,公司多年来积累了大量复杂的与业务高度相关的基础数据,在发现问题、分析问题,解决问题的过程中,如何协调业务前、中、后台以及科技部门等多方面配合来开展业务口径的梳理与加工逻辑的开发,成为目前亟待解决的关键问题。


image.png


中信的数据中台架构如图所示,主要分为以下几大板块:由 Greenplum 数据仓库和 Hadoop 大数据平台构成的数据中心板块;以离线开发、实时开发、数据交换为主的数据开发板块;以及数据门户、数据网关、数据治理、运营管理等板块构成。  


其中数据开发板块目前的任务主要以离线开发与数据交换的离线数据处理为主。但随着业务对数据时效性的提高,基于离线批处理的 t+1 业务模式已经无法完全满足当前市场环境下对信息及时性的需求,这也是大力发展实时开发,力求为客户提供更高时效性数据服务的原因。  


从数据门户统一入口进入实时开发模块,首先将集中交易、融资融券等业务信息的实时增量数据拉取到 Kafka 消息队列,Flink 消费 Kafka 实时流数据并与维表数据进行数据加工。加工逻辑中涉及的维表数据量比较大时,需要离线开发与数据交换,通过离线跑批的方式完成对维表的数据准备。最后将结果数据写入关系型数据库或 NoSQL 数据库。数据网关再通过读取结果数据生成 API 接口,对下游的系统提供数据服务。  


数据治理板块中的数据管控模块主要管理数据中台的数据库表以及业务相关的数据库表的元数据,用户可以在数据门户订阅他们所关注数据库表的变更信息。当订阅的数据表发生了变化的时候,运营中心可以通过统一告警模块,多渠道通知订阅用户数据库表的变更情况,以便于开发人员及时调整数据加工的任务。  


image.png


Flink 实时流处理架构首先通过 Attunity 工具采集业务数据库的 CDC 日志,将同一系统下的数据库表变化写入 Kafka 的一个 topic 队列中,这也就意味着 Kafka 的每一个 topic 中都会有多个表的数据,所以在 Flink 的 Kafka source 要先对 schema 和 tablename 这两个字段进行一次过滤,获取想要拿到的数据表的 CDC 数据流,再进行后续与维表的加工逻辑。将处理后的数据写入结果表,根据需求不同写入不同的数据库进行存储。  


证券行业数据有两个明显特征:


第一个特点是开盘的时间固定,大量业务在收盘后数据量会大幅减少,甚至有一些业务在收盘后不再产生新的数据。为了节约资源,需要根据实际情况对那些与开盘时间紧密相关的任务设置启停时间;


第二个特点是金融数据的重要性,大量场景下不允许数据偏差存在。针对数据可靠性要求极高的特征,需要对大量实时任务设置夜间数据修正的离线任务,保证数据的正确性。



《Apache Flink 案例集(2022版)》——5.数字化转型——中信建设-Apache Flink 在国有大型银行智能运营场景下的应用(下):https://developer.aliyun.com/article/1227892


相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
702 5
|
9月前
|
Java 网络安全 Apache
SshClient应用指南:使用org.apache.sshd库在服务器中执行命令。
总结起来,Apache SSHD库是一个强大的工具,甚至可以用于创建你自己的SSH Server。当你需要在服务器中执行命令时,这无疑是非常有用的。希望这个指南能对你有所帮助,并祝你在使用Apache SSHD库中有一个愉快的旅程!
540 29
|
11月前
|
存储 运维 监控
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
中信银行信用卡中心每日新增日志数据 140 亿条(80TB),全量归档日志量超 40PB,早期基于 Elasticsearch 构建的日志云平台,面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此使用 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。
554 3
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
|
存储 数据采集 大数据
Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
739 8
Flink实时湖仓,为汽车行业数字化加速!
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
458 1
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
429 8
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
215 1
|
SQL 机器学习/深度学习 人工智能
Flink 实战:如何解决应用中的技术难题?
倒计时 5 天!4月25-26日,全球首个 Apache 顶级项目在线会议 Flink Forward 精华版即将重磅开启。 Flink Forward 全球在线会议精华版均为中文直播,核心内容分为 Keynote 与社区投票的最感兴趣的 talk 两部分,由 Apache Flink 核心贡献者们对原版英文 talk 进行翻译及解说,您可直接免费在线观看。
Flink 实战:如何解决应用中的技术难题?
|
4月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
482 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多