斯坦福70亿参数开源模型媲美GPT-3.5,100美元即可复现

简介: 斯坦福70亿参数开源模型媲美GPT-3.5,100美元即可复现


机器之心编辑部

学界或许没有业界的算力优势,但可以使用 self-instruct 方法直面大规模语言模型的挑战。


随着大规模语言模型的日渐强大,人们对 AI 模型提出了伦理道德方面的更高要求。业界在模型规模扩展方面具有算力资源优势,但要想让模型更规范、可靠,需要学术界的努力。


近日,斯坦福基于 Meta 的 LLaMA 7B 模型微调出一个新模型 Alpaca。该研究让 OpenAI 的 text-davinci-003 模型以 self-instruct 方式生成 52K 指令遵循(instruction-following)样本,以此作为 Alpaca 的训练数据。研究团队已将训练数据、生成训练数据的代码和超参数开源,后续还将发布模型权重和训练代码。




实验结果表明,Alpaca 的很多行为都与 text-davinci-003 类似。也就是说,只有 7B 参数的轻量级模型 Alpaca 性能可媲美 GPT-3.5 这样的超大规模语言模型。


我们来看一下 Alpaca 模型是如何做到的。


训练方法


在学术界的预算条件下,训练高质量的指令遵循模型面临两个重要挑战:强大的预训练语言模型和高质量的指令遵循数据。


Meta 最近发布的 LLaMA 系列模型解决了第一个挑战。对于第二个挑战,2022 年底的 self-instruct 论文提出使用现有的强大语言模型自动生成指令数据。


论文地址:https://arxiv.org/abs/2212.10560


按照这种方法,Alpaca 使用 LLaMA 7B 模型的监督学习在 text-davinci-003 以 self-instruct 方式生成的 52K 指令遵循样本上进行微调。


self-instruct 方法概览。


Alpaca 的研究团队首先使用 self-instruct 种子集中的 175 个人工编写的指令输出(instruction-output)对,然后用该种子集作为 in-context 样本 prompt text-davinci-003 来生成更多指令。该研究通过简化生成 pipeline 改进了 self-instruct 方法,并显著降低了成本。



该研究共生成了 52K 个不同的指令和相应的输出作为训练数据,其中使用了 OpenAI 开放的 API,成本不到 500 美元。由于研究团队已将训练数据开源,对于想要复现 Alpaca 的开发者来说,这500美元就省下了。



有了这个指令遵循数据集,该研究下一步使用 Hugging Face 的训练框架微调了 LLaMA 模型,并利用了 FSDP(Fully Sharded Data Parallel)和混合精度训练等技术。成本方面,在 8 个 80GB A100 上微调一个 7B LLaMA 模型需要 3 个小时,这对大多数云计算提供商来说成本不到 100 美元。


模型评估


该研究使用来自 self-instruct 评估集的输入进行了人工评估,这项工作由 5 名研究团队的学生完成。该评估集由 self-instruct 论文的作者收集整理,涵盖了多种面向用户的 instruction,涉及电子邮件、社交媒体和办公工具。


在将 text-davinci-003 和 Alpaca 7B 进行 blind pairwise 比较之后,研究者发现这两个模型的性能非常相似,并且 Alpaca 略优于 text-davinci-003。


从参数规模的角度看,Alpaca 远远小于 text-davinci-003,移动端甚至也可以运行 7B 的轻量级语言模型。这让 Alpaca 意义非凡。


除了利用上述静态的 self-instruct 评估集,该研究还对 Alpaca 模型进行了交互测试,并发现 Alpaca 的表现通常与 text-davinci-003 相似。


下面是研究团队测试的两个例子,结果表明 Alpaca 的输出良好,并且反映出指令遵循数据集的一般风格。例如,Alpaca 输出的答案通常比 ChatGPT 更简洁,这和 text-davinci-003 类似。



模型缺陷


实验中,Alpaca 还表现出语言模型的几种常见缺陷,包括幻觉、毒性和刻板印象,其中幻觉问题尤其严重。


例如在下图中,Alpaca 回答坦桑尼亚的首都是达累斯萨拉姆,但实际上应该是多多马。



此外,Alpaca 能够生成一些看似良好却包含错误或虚假信息的文本,这可能会误导人们。


Alpaca 可能包含许多与底层语言模型和指令调优数据相关的其他缺陷。但是,Alpaca 对机器学习社区仍然具有重要意义,因为它提供了一个相对轻量级的模型,可作为研究重要缺陷的基础。斯坦福的研究团队还强调:Alpaca 只可用于学术研究,禁止任何商业用途。


接下来,斯坦福的研究团队会进一步探究 Alpaca 模型的安全性、理解能力、规模扩展等等。研究团队希望 Alpaca 能够促进指令遵循模型的发展。


原文链接:

https://crfm.stanford.edu/2023/03/13/alpaca.html

相关文章
|
5月前
|
数据可视化 API Swift
全模态图像模型Nexus-Gen对齐GPT-4o!同时搞定,数据、训练框架、模型全面开源
OpenAI GPT-4o发布强大图片生成能力后,业界对大模型生图能力的探索向全模态方向倾斜,训练全模态模型成研发重点。
270 17
|
3月前
|
机器学习/深度学习 人工智能 编解码
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
|
3月前
|
人工智能 数据挖掘 API
Kimi K2开源炸场,1万亿参数碾压GPT-4.1,成本仅Claude 4的1/5!
月之暗面开源的万亿参数大模型Kimi K2引发行业震动,48小时内即登顶OpenRouter API调用榜,GitHub项目激增200%。该模型在代码生成、Agent任务及中文创作上超越Claude 4,标志着中国大模型首次在三大核心能力上达到全球顶尖水平。
|
5月前
|
人工智能 API 开发者
狂揽7.5k星!这款开源API网关彻底解放开发者:一键聚合GPT-4、Suno、Midjourney,还能在线充值!
New API 是一款基于 One API 二次开发的 AI 模型接口管理与分发系统,支持多种大模型(如 GPT-4、Suno、Midjourney 等)统一封装为 OpenAI 格式接口调用。其核心功能包括多模型统一网关、企业级权限管控、“推理力度”分级、无魔法访问全球 AI 服务、灵活计费体系及开发者友好设计。技术架构采用 Golang + Gin 框架,支持高并发低延迟,适用于企业内部 AI 中台、多模型 SaaS 平台、学术研究协作及个人开发者工具等场景。项目开源地址:https://github.com/kingbug/new-api。
1210 6
|
存储 SQL 数据库
Python 金融编程第二版(GPT 重译)(四)(4)
Python 金融编程第二版(GPT 重译)(四)
143 3
|
存储 NoSQL 索引
Python 金融编程第二版(GPT 重译)(一)(4)
Python 金融编程第二版(GPT 重译)(一)
144 2
|
存储 机器学习/深度学习 关系型数据库
Python 金融编程第二版(GPT 重译)(四)(5)
Python 金融编程第二版(GPT 重译)(四)
93 2
|
存储 SQL 数据可视化
Python 金融编程第二版(GPT 重译)(四)(1)
Python 金融编程第二版(GPT 重译)(四)
135 2

热门文章

最新文章