《城市绿色出行指数白皮书》——3.碳排放计算框架——3.4 碳排放修正因子计算

简介: 《城市绿色出行指数白皮书》——3.碳排放计算框架——3.4 碳排放修正因子计算

3.4 碳排放修正因子计算


在实际交通场景中,车辆实际碳排放量随驾驶环境与状态动态变化。碳排放量会受 到汽车速度、交通拥堵、道路坡度、载客率等多种因素影响,仅靠基础碳排放因子无法 计算出准确的碳排放量。因此,城市交通出行碳足迹计算需要根据具体场景对基础碳排 放因子进行修正。本报告将不同场景下的碳排放量变化转换成相对于基础碳排放因子的 比例,即修正因子𝛼,通过𝛼与排放因子的乘积计算实际的碳排放因子。


在修正因子的计算中,本报告将修正因子分为地面交通和轨道交通两大类,其中地 面交通包括私家车、出租车/网约车、公交车三类。


考虑到电瓶车和自行车基本处于低速场景中,且其碳排放量较低,故不进行碳排放 因子修正。步行为零碳出行,其修正因子为0。对于其他交通方式,因所占比例较小、 缺乏统计数据等原因,本报告中也不进行修正。


影响碳排放的因素会随着时间和空间发生改变。为对应不同时空影响因素的变化, 本报告针对不同交通方式和不同的时空特征,提出建立如下所示的时空分布表(** ):


工作日公交车速度/载客率/坡度时空分布表


image.png


每种交通方式都会对应一张工作日和一张节假日的时空分布表。表中的数据为统 计时间内对应时段、对应区域、对应交通方式的平均值。出于公平性的考虑,在其余 条件(出行时间、出行路线、天气等)相同的情况下,选择公交出行的个人,所产生的 碳排放量认为是相同的。但实际过程中,车辆受驾驶行为和交通状况的影响,同种交 通方式的碳排放量会有一定差别。因此,本报告将在相应时段、区域内行驶的车辆数 据直接使用时空分布表中的数据进行替代。这样的方法既满足了公平性,也保证了区 域碳足迹量化时的准确性。通过时空分布表计算碳排放修正因子的详细方法,请参考 附录D。


注:(* ) 私家车、出租车的载客率用平均载客率表示 (** )时空分布表中的数据仅作为示例,不代表真实数值。

相关文章
|
缓存 网络协议 应用服务中间件
NATAPP - 连不上 / 错误信息等问题解决汇总
NATAPP - 连不上 / 错误信息等问题解决汇总
4211 0
NATAPP - 连不上 / 错误信息等问题解决汇总
|
5月前
|
数据采集 人工智能 编解码
2025年颠覆闭源大模型?MonkeyOCR:这款开源AI文档解析模型,精度更高,速度更快!
还在依赖昂贵且慢的闭源OCR工具?华中科技大学开源的MonkeyOCR文档解析模型,以其超越GPT4o的精度和更快的推理速度,在单机单卡(3090)上即可部署,正颠覆业界认知。本文将深入解析其设计哲学、核心突破——大规模自建数据集,并分享实测体验与避坑指南。
1701 87
|
机器学习/深度学习 PyTorch TensorFlow
Pytorch学习笔记(二):nn.Conv2d()函数详解
这篇文章是关于PyTorch中nn.Conv2d函数的详解,包括其函数语法、参数解释、具体代码示例以及与其他维度卷积函数的区别。
2732 0
Pytorch学习笔记(二):nn.Conv2d()函数详解
|
10月前
|
人工智能 缓存 安全
每一个大模型应用都需要一个 AI 网关|场景和能力
本次分享的主题是每一个大模型应用都需要一个 AI 网关|场景和能力。由 API 网关产品经理张裕(子丑)进行分享。主要分为三个部分: 1. 企业应用 AI 场景面临的挑战 2. AI 网关的产品方案 3. AI 网关的场景演示
1244 1
|
11月前
|
JSON 安全 API
API接口是什么?(一篇文章全知道)
在数字化时代,API接口已成为推动软件生态和互联网创新的核心枢纽。本文深入解析了API的本质、架构、类型及应用场景,展示了其在移动互联网、电商、智慧城市等领域的广泛应用,并探讨了API在经济、创新和效率方面的巨大价值与深远影响。
2949 2
|
数据采集 资源调度 算法
【数据挖掘】十大算法之K-Means K均值聚类算法
K-Means聚类算法的基本介绍,包括算法步骤、损失函数、优缺点分析以及如何优化和改进算法的方法,还提到了几种改进的K-Means算法,如K-Means++和ISODATA算法。
1682 4
|
Java Spring 容器
spring的四种注入方式
spring的四种注入方式
638 0
《城市绿色出行指数白皮书》——附录C :碳排放因子计算
《城市绿色出行指数白皮书》——附录C :碳排放因子计算
2963 0
基于GA-PSO遗传粒子群混合优化算法的VRPTW问题求解matlab仿真
摘要: 本文介绍了考虑时间窗的车辆路径问题(VRPTW),在MATLAB2022a中进行测试。VRPTW涉及车辆从配送中心出发,服务客户并返回,需在指定时间窗内完成且满足车辆容量限制,目标是最小化总行驶成本。文章探讨了遗传算法(GA)和粒子群优化(PSO)的基本原理及其在VRPTW中的应用,包括编码、适应度函数、选择、交叉、变异等步骤。同时,提出了动态惯性权重、精英策略、邻域搜索、多种群和启发式信息等优化策略,以应对时间窗限制并提升算法性能。
276 11
|
虚拟化
【虚拟机】VMware 扩展硬盘大小提示 指定的虚拟磁盘需要进行修复
【虚拟机】VMware 扩展硬盘大小提示 指定的虚拟磁盘需要进行修复
1397 1