带你读《Elastic Stack 实战手册》之78:——4.2.4.Elasticsearch和Python构建面部识别系统(下)

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 带你读《Elastic Stack 实战手册》之78:——4.2.4.Elasticsearch和Python构建面部识别系统(下)

《Elastic Stack 实战手册》——四、应用实践——4.2 可观测性应用场景 ——4.2.4.Elasticsearch和Python构建面部识别系统(中) https://developer.aliyun.com/article/1225805


匹配面孔

 

假设我们在 Elasticsearch 中索引了四个文档,其中包含 Elastic 创始人的每个面部表情。 现在,我们可以使用创始人的其他图像来匹配各个图像。


image.png

为此,我们需要创建一个叫做 recognizeFaces.py 的文件。

recognizeFaces.py


import face_recognition
import numpy as np
from elasticsearch import Elasticsearch
import sys
import os
from elasticsearch import Elasticsearch
es = Elasticsearch([{'host': 'localhost', 'port': 9200}])
cwd = os.getcwd()
# print("cwd: " + cwd)
# Get the images directory
rootdir = cwd + "/images_to_be_recognized"
# print("rootdir: {0}".format(rootdir))
for subdir, dirs, files in os.walk(rootdir):
    for file in files:
        print(os.path.join(subdir, file))
        file_path = os.path.join(subdir, file)
        image = face_recognition.load_image_file(file_path)
        # detect the faces from the images
        face_locations = face_recognition.face_locations(image)
        # encode the 128-dimension face encoding for each face in the image
        face_encodings = face_recognition.face_encodings(image, face_locations)
        # Display the 128-dimension for each face detected
        i = 0
        for face_encoding in face_encodings:
            i += 1
            print("Face", i)
            response = es.search(
                index="faces",
                body={
                    "size": 1,
                    "_source": "face_name",
                    "query": {
                          "script_score": {
                            "query": {
                                "match_all": {}
                            },
                                              "script": {
                                "source": "cosineSimilarity(params.query_vector, 'face_encoding')",
                                "params": {
                                    "query_vector": face_encoding.tolist()
                                }
                            }
                        }
                    }
                }
            )
            # print(response)
            for hit in response['hits']['hits']:
                # double score=float(hit['_score'])
                print("score: {}".format(hit['_score']))
                if float(hit['_score']) > 0.92:
                    print("==> This face  match with ", hit['_source']['face_name'], ",the score is", hit['_score'])
                else:
                    print("==> Unknown face")

这个文件的写法也非常简单。它从目录 images_to_be_recognized 中获取需要识别的文件,并对这个图片进行识别。我们使用 cosineSimilarity 函数来计算给定查询向量和存储在 Elasticsearch 中的文档向量之间的余弦相似度。

# Display the 128-dimension for each face detected
        i = 0
        for face_encoding in face_encodings:
            i += 1
            print("Face", i)
              response = es.search(
                index="faces",
                body={
                    "size": 1,
                    "_source": "face_name",
                    "query": {
                      "script_score": {
                            "query": {
                                "match_all": {}
                            },
                            "script": {
                                "source": "cosineSimilarity(params.query_vector, 'face_encoding')",
                                "params": {
                                    "query_vector": face_encoding.tolist()
                                }
                            }
                        }
                    }
                }
            )

假设分数低于 0.92 被认为是未知面孔:

for hit in response['hits']['hits']:
                # double score=float(hit['_score'])
                print("score: {}".format(hit['_score']))
                if float(hit['_score']) > 0.92:
                    print("==> This face  match with ", hit['_source']['face_name'], ",the score is", hit['_score'])
                else:
                    print("==> Unknown face")

执行上面的 Python 代码:

image.png

该脚本能够检测出得分匹配度高于 0.92 的所有面孔


搜寻进阶

 

面部识别和搜索可以结合使用,以用于高级用例。 你可以使用 Elasticsearch 构建更复杂的查询,例如 geo_queries,query-dsl-bool-query 和 search-aggregations。

 

例如,以下查询将 cosineSimilarity 搜索应用于200公里半径内的特定位置:


GET /_search 
{ 
  "query": { 
    "script_score": { 
      "query": { 
    "bool": { 
      "must": { 
        "match_all": {} 
      }, 
      "filter": { 
        "geo_distance": { 
          "distance": "200km", 
          "pin.location": { 
            "lat": 40, 
            "lon": -70 
          } 
        } 
      } 
    } 
  }, 
       "script": { 
                "source": "cosineSimilarity(params.query_vector, 'face_encoding')", 
                 "params": { 
                 "query_vector":[ 
                        -0.14664565,
                       0.07806452,
                       0.03944433,
                       ...
                       ...
                       ...
                       -0.03167224,
                       -0.13942884
                    ] 
                } 
           } 
    } 
     } 
}

将 cosineSimilarity 与其他 Elasticsearch 查询结合使用,可以无限地实现更复杂的用例。

 结论

 

面部识别可能与许多用例相关,并且你可能已经在日常生活中使用了它。 上面描述的概念可以推广到图像或视频中的任何对象检测,因此你可以将用例扩展到非常大的应用场景。

 

参考

 

l https://www.elastic.co/blog/how-to-build-a-facial-recognition-system-using-elasticsearch-and-python

 

创作人简介

刘晓国,现为 Elastic 社区资深布道师。新加坡国立大学硕士,西北工业大学本硕。曾就职于新加坡科技,康柏电脑,通用汽车,爱立信,诺基亚,Linaro 非营利组织(Linux for ARM),

Ubuntu,LinkMotion,Vantiq等企业。从事过通信,电脑设计,计算机操作系统,物联网,汽车电子,云实时事件处理,大数据搜索等行业。从爱立信开始,到后来的诺基亚,Ubuntu从事社区工作有超过 15 年以上经历。喜欢分享自己所学到的知识,希望和大家一起分享及学习。

博客:https://elasticstack.blog.csdn.net/

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
3月前
|
机器学习/深度学习 监控 算法
基于mediapipe深度学习的手势数字识别系统python源码
本内容涵盖手势识别算法的相关资料,包括:1. 算法运行效果预览(无水印完整程序);2. 软件版本与配置环境说明,提供Python运行环境安装步骤;3. 部分核心代码,完整版含中文注释及操作视频;4. 算法理论概述,详解Mediapipe框架在手势识别中的应用。Mediapipe采用模块化设计,包含Calculator Graph、Packet和Subgraph等核心组件,支持实时处理任务,广泛应用于虚拟现实、智能监控等领域。
|
20天前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
108 3
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
前端开发 关系型数据库 MySQL
基于python“花开富贵”花园管理系统
感谢大学同学的陪伴与帮助,在我独立编写毕业论文期间,大学同学的鼓励与耐心的帮助使得我少走很多弯路,节省毕业论文的编写时间,也让我有更多精力去完善我开发的系统。 在整个系统开发过程中,我周围的同学和朋友给了我很多意见,所以我很快就确认了系统的商业思想。在次,我由衷的向他们表示感激。
31 0
|
5月前
|
前端开发 JavaScript 关系型数据库
基于python的租房网站-房屋出租租赁系统(python+django+vue)源码+运行
该项目是基于python/django/vue开发的房屋租赁系统/租房平台,作为本学期的课程作业作品。欢迎大家提出宝贵建议。
156 6
|
4月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
1724 0
|
5月前
|
JavaScript 前端开发 关系型数据库
基于Python+Vue开发的体育场馆预约管理系统源码+运行
本项目为大学生课程设计作业,采用Python和Vue技术构建了一个体育场馆预约管理系统(实现前后端分离)。系统的主要目标在于帮助学生理解和掌握Python编程知识,同时培养其项目规划和开发能力。参与该项目的学习过程,学生能够在实际操作中锻炼技能,为未来的职业发展奠定良好的基础。
127 3
|
3月前
|
Python
Python编程基石:整型、浮点、字符串与布尔值完全解读
本文介绍了Python中的四种基本数据类型:整型(int)、浮点型(float)、字符串(str)和布尔型(bool)。整型表示无大小限制的整数,支持各类运算;浮点型遵循IEEE 754标准,需注意精度问题;字符串是不可变序列,支持多种操作与方法;布尔型仅有True和False两个值,可与其他类型转换。掌握这些类型及其转换规则是Python编程的基础。
205 33
|
2月前
|
数据采集 分布式计算 大数据
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
76 1

相关产品

  • 检索分析服务 Elasticsearch版
  • 推荐镜像

    更多