阿里巴巴宣布加入 Linux Foundation AI&Data 基金会,捐赠首个开源项目 DeepRec

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 持续加大对AI和大数据技术的投入以促进相关开源建设。

近日,阿里巴巴宣布加入 Linux Foundation AI&Data 基金会,持续加大对 AI 和大数据技术的投入以促进相关开源建设。


阿里巴巴是 Linux 的活跃开发者,此前已经为 Linux 内核提交了 290 多个 Patch。除了 Linux 之外,阿里巴巴在 MySQL、JVM、Web 服务器等知名项目中均有杰出贡献,也是开源组织 WebScaleSQL 的 5 大成员之一。

阿里云机器学习平台 PAI 和大数据平台技术负责人林伟表示:“加入 Linux Foundation AI&Data 基金会有助于阿里巴巴更加深入地理解 LF AI&Data,更多地参与到技术与标准制定讨论当中,主动把握未来大数据和 AI 发展方向”。


此次,在加入 Linux Foundation AI&Data 基金会的同时,阿里巴巴也积极地回馈社区,将面向推荐场景的高性能深度学习框架 DeepRec 捐赠给 Linux Foundation AI&Data 基金会托管。


DeepRec 是阿里云机器学习平台 PAI 开源的面向推荐场景的高性能深度学习框架,针对稀疏模型在分布式、图优化、算子、Runtime 等方面进行了深度的性能优化,同时提供了搜索、推荐、广告场景下特有的动态弹性特征,动态弹性维度,自适应 EmbeddingVariable、增量模型导出及加载等一系列功能。


DeepRec 在阿里巴巴集团内部广泛应用于淘宝、天猫、阿里妈妈、高德、淘特、AliExpress、Lazada 等,支持了淘宝搜索、推荐、广告等核心业务,支撑着千亿特征、万亿样本的超大规模稀疏训练。DeepRec 开源一年多以来,已经在数十家公司的搜推广业务场景中大规模应用,带来了巨大的业务价值。


Linux Foundation AI&Data 基金会执行董事 Ibrahim Haddad 博士对此表示热烈欢迎,“DeepRec 凭借其在深度学习推荐框架方面令人印象深刻的成果,为技术项目带来创新的解决方案。很高兴与 DeepRec 合作进一步开发和增强这一强大的开源技术。借助 Linux Foundation AI&Data 基金会的专业知识和资源,携手共进一同推动深度学习的进步,并彻底改变处理推荐系统的方式。”


阿里巴巴在 DeepRec 捐赠后,将继续和 LFAI&Data 一起持续维护和推广 DeepRec,打造面向搜推广场景的深度学习框架生态,吸引更多的公司和团队参与到 DeepRec 使用和开发中来。此外阿里巴巴将会更加积极开放地参与到更多的开源基金会,并将在适当时候捐献部分软件项目给基金会托管。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
16天前
|
存储 人工智能 uml
介绍一款好用的开源画图神器-draw.io | AI应用开发
draw.io 是一款基于浏览器的开源绘图工具,无需安装即可使用,支持多种操作系统和设备。其简洁的界面、丰富的形状库、智能对齐功能和强大的云端协作能力,使其成为专业人士和创意爱好者的首选。无论是产品设计、流程图绘制还是思维导图构建,draw.io 都能满足你的多样化需求。【10月更文挑战第7天】
65 0
|
2天前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
19 6
|
14天前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
|
19天前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
阿里云开源 Spring AI Alibaba,旨在帮助 Java 开发者快速构建 AI 应用,共同构建物理新世界。
|
18天前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
33 4
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来AI趋势:掌握Function Calling技巧,解锁大模型精度提升的秘密武器,让你的数据科学项目事半功倍!
【10月更文挑战第6天】随着深度学习技术的发展,神经网络模型日益复杂,Function Calling作为一种机制,在提升大模型准确度方面发挥重要作用。本文探讨Function Calling的概念及其在大模型中的应用,通过具体示例展示如何利用其优化模型性能。Function Calling使模型能在运行过程中调用特定函数,提供额外的信息处理或计算服务,增强模型表达能力和泛化能力。例如,在文本生成模型中,根据上下文调用词性标注或实体识别等功能模块,可使生成的文本更自然准确。通过合理设计条件判断逻辑和功能模块权重,Function Calling能显著提升模型整体表现。
25 3
|
22天前
|
人工智能 编解码 文字识别
阿里国际AI开源Ovis1.6,多项得分超GPT-4o-mini!
阿里国际AI团队提出了一种名为Ovis (Open VISion)的新型多模态大模型的架构。
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】LLM主流开源大模型介绍
【AI大模型】LLM主流开源大模型介绍
|
24天前
|
人工智能 自动驾驶 机器人
【通义】AI视界|苹果自动驾驶汽车项目画上句号:加州测试许可被取消
本文精选了24小时内的重要科技新闻,包括Waymo前CEO批评马斯克对自动驾驶的态度、AMD发布新款AI芯片但股价波动、苹果造车项目终止、Familia.AI推出家庭应用以及AI逆向绘画技术的进展。更多内容请访问通义官网体验。
|
10天前
|
人工智能 IDE API
在我的开源项目(AI Godot 桌宠)中使用通义灵码
作为一名AI代码助手的忠实用户,我近期尝试了阿里开源的Qwen模型。通过在个人项目——一个由Godot引擎开发的AI桌宠软件中测试Qwen,我发现其在处理小众语言(如GDScript)时表现出色,能够快速准确地解决问题,甚至优化了我的代码。此外,Qwen在GitHub Actions自动化打包等复杂任务上的表现同样令人满意。其高效的代码补全速度更是超越了付费的GitHub Copilot。这次体验让我对开源AI工具刮目相看,强烈推荐大家试用。

热门文章

最新文章