【车牌识别】基于卷积神经网络CNN实现车牌识别附matlab代码

简介: 【车牌识别】基于卷积神经网络CNN实现车牌识别附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着大数据技术的成熟以及人工智能技术的蓬勃发展,智慧交通逐渐成为相关技术的重要落地点。通过智慧交通技术,可以使道路网络达到更高的运行效率,既节省了人们的时间,又减少了资源的消耗。城市在发展过程中不免会遇到各种复杂的问题,举例来说,城市停车,停车难已经成为各发展较快城市,城市化过程中一个难以避免的问题。在停车场的入几处,设置午牌识别机以扫描和识别进出车辆的车牌号码,与相关系统对接并记录车辆的信息。车牌识别不仅可以加强车辆进出入管理,而且还有利于优化停车位的分布和方便车主查询查找停车位。因自然环境及监控设备而等因素的影响,采集的车牌照片质量层次不齐,因此,不同质量的标签照片要能够准确识别标签信息很有必要。

⛄ 部分代码

function t = qiege(image)

%用途:去掉不用的黑色区域,使得边界与白色点紧密连接


[m,n]=size(image);

top = 1;

bottom = m;

left = 1;

right = n;

while 1

   

   while sum(image(top,:))==0 && top<=m  

       top = top + 1;

   end

   while sum(image(bottom,:))==0 && bottom>=1

       bottom = bottom - 1;

   end

   while sum(image(:,left))<m/20 && left<=n

       left = left + 1;

   end

   while sum(image(:,right))<m/20 && right>=1

       right = right - 1;

   end

   dd = right - left;

   hh = bottom - top;

   length=round(hh/4);

   

   if   n<50                        %分割到最后一张图就直接跳出

       break;

   end

   if sum(image(:,left+10)) >10 && sum(image(:,left+5))>10  %分割常规字符

       break;

   end

   if ( sum(image(:,left+1)) + sum(image(:,left+3)) )  >m/2  %分割“1”字符

       break;

   end

   

   left=left+5;

   

end

%切割图像

t = imcrop(image, [left top dd hh]);

⛄ 运行结果

⛄ 参考文献

[1] 周世杰, 李顶根. 基于卷积神经网络的大场景下车牌识别[J]. 计算机工程与设计, 2020, 41(9):5.

[2] 刘永桂, 任闯. 一种基于卷积神经网络的车牌识别方法:, CN113159153A[P]. 2021.

[3] 彭洋, 汪孟杰. 基于卷积神经网络的车牌识别[J]. 微计算机信息, 2020, 000(017):72-73.

[4] 苏康友柳贵东熊宇. 基于卷积神经网络的车牌识别设计[J]. 信息与电脑, 2022, 34(15):198-200.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
20 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
26天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
249 55
|
17天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
152 80
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
11天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
13天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
25天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
63 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
52 10