《达摩院2023十大科技趋势》——产业革新——双引擎智能决策

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 《达摩院2023十大科技趋势》——产业革新——双引擎智能决策

趋势七、双引擎智能决策


融合运筹优化和机器学习的双引擎智能决策,将推进全局动态 资源配置优化。


摘要


企业需在纷繁复杂、动态变化的环 境中快速精准地做出经营决策。经典决 策优化基于运筹学,通过对现实问题进 行准确描述来构建数学模型,同时结合 运筹优化算法,在多重约束条件下求目 标函数最优解。随着外部环境复杂程度 和变化速度不断加剧,经典决策优化对 不确定性问题处理不够好、大规模求解 响应速度不够快的局限性日益突显。学 术界和产业界开始探索引入机器学习, 构建数学模型与数据模型双引擎新型智 能决策体系,弥补彼此局限性、提升决 策速度和质量。未来,双引擎智能决策 将进一步拓展应用场景,在大规模实时 电力调度、港口吞吐量优化、机场停机 安排、制造工艺优化等特定领域推进全 局实时动态资源配置优化。


image.png


趋势解读


近年来,全球性突发事件(如疫情、 战争、技术管制等)频繁出现,使 得外部环境变得更加复杂、不确定性更高; 同时,市场不断变化、要求不断提升。企 业需在纷繁复杂、动态变化的环境中,快 速精准地做出经营决策。


智能决策是综合利用多种智能技术 和工具,基于既定目标,对相关数据进行 建模、分析并得到最优决策的过程。该过 程将约束条件、策略、偏好、目标等因素 转化为数学模型,并利用智能技术自动实 现最优决策,旨在解决日益复杂、动态变 化的经营决策问题(如打车平台派单、充 电桩选址、生产排程等问题)。


经典决策优化基于运筹学,起源于二 战中的空战规划。它通过对现实问题进行 准确描述刻画来构建数学模型,同时结合 运筹优化算法,在多重约束条件下求目标 函数最优解。基于运筹学的决策优化对数 据量的依赖性弱、求解质量较高、可解释 性较强,被广泛运用于各类决策场景。


随着外部环境复杂程度和变化速度不 断加剧,经典决策优化的局限性愈发突现, 主要体现在:一是对于不确定性问题的处 理能力不足,二是对大规模问题响应不够 迅速。学术界和产业界开始探索引入机器 学习,构建数学模型与数据模型双引擎新 型智能决策体系。机器学习基于数据驱动 模型,模拟出近似解区域,缩小经典方式 求解空间,可大幅提升求解效率。机器学 习的优势在于可应对不确定性高、在线响 应速度快的场景;劣势为学习效率慢、成 本高,且求解的质量不够高。由此可以看出, 运筹优化和机器学习的结合完美弥补了彼 此局限性,极大地提升了决策速度和质量。


双引擎智能决策尚处于起步阶段。众 多决策优化场景(如交通领域港口吞吐量 优化、机场停机安排等,制造领域工艺优化、 产销协同等),开始尝试用双引擎方式在 动态变化中快速找到最优解。最典型的、 也最具挑战的场景是电力调度场景。电力 调度场景转化为智能决策问题可描述为:


目标:在满足电网安全稳定运行前提 下,降低购电成本或者实现全社会福 利最大化,并促进新能源消纳。

约束条件:1)必须满足所有安全约束 , 包括节点电压、线路与断面热稳定限 额;2)发用电负荷平衡约束;3)满 足物理特性 , 如机组爬坡、开停机曲 线、梯级水电等。

决策难点:1)调度业务非常复杂,涉 及海量决策数据 : 目前省级变量与约 束达千万级别 ; 随着新能源快速装机 以及引入负荷侧参与调节,直到实现 双碳目标全网变量与约束预计将超过 十亿级;2)新能源发电占比将越来越 大,其波动性和随机性将对模型驱动 的数学优化效率带来极大挑战;3)机 器学习难以保证满足所有安全约束。


双引擎智能决策将机器学习与底层 优化技术深度耦合在了一起,在满足各类 安全约束条件的情况下,将计算效率提高 10 倍以上,有望实现秒级调度优化,突 破新型电力系统电网调度追风、逐日决策 的性能瓶颈。


未来,双引擎智能决策将进一步拓展 应用场景,在特定领域实现更多主体、更 大范围的资源配置优化,进而推进全局实 时动态的资源配置优化。


专家点评


近 年 来, 随 着 全 球 减碳活动的推广和 新 能 源 的 发 展, 能 源管理的系统复杂 度迅速增加。光伏、 风电、储能、微电网、 充 电 桩、 电 动 车 在 内的各种新能源设 备 增 长 迅 猛, 对 发 电 侧、 电 网 侧 和 用 户侧的能源管理都 提出了更高的挑战。 传统电力管理需要 面 对 如 多 能 互 补、 削 峰 填 谷、 预 测 优 化、 柔 性 充 放 等 各 种新的运营需求。 新的能源智能决策 系统将会整合“源网 荷储”端的各种信息, 对海量的能源数据 进行快速分析、自动 优化、和实时响应, 实现全局和局部的 能源资源配置优化, 从传统粗放的管理 逐渐向精细化和智 能化转变。 未来的智慧能源管 理将引领一次新的 技 术 革 命, 带 来 各 种全新的应用和商 业 机 会, 连 接 每 个 人 的 生 活。 双 引 擎 智能决策系统将不 断推进能源效率提 升 和 优 化, 为 实 现 国家的双碳目标奠 定坚实的基础。


罗宇翔

普华永道可持续战 略与运营合伙人


相关文章
|
9月前
|
API C# 图形学
Unity调用Windows弹出确认框
在 Unity 中调用 Windows 弹出确认框,可通过 Windows API 或 .NET 框架实现。使用 Windows API 的方式是通过 P/Invoke 技术调用 MessageBox 函数,创建模态对话框。代码示例展示了如何在应用退出时弹出确认框,用户选择“确定”则退出游戏。此方法也适用于 ALT+F4 触发的退出确认。
|
开发框架 负载均衡 Java
当热门技术负载均衡遇上 Spring Boot,开发者的梦想与挑战在此碰撞,你准备好了吗?
【8月更文挑战第29天】在互联网应用开发中,负载均衡至关重要,可避免单服务器过载导致性能下降或崩溃。Spring Boot 作为流行框架,提供了强大的负载均衡支持,通过合理分配请求至多台服务器,提升系统可用性与可靠性,优化资源利用。本文通过示例展示了如何在 Spring Boot 中配置负载均衡,包括添加依赖、创建负载均衡的 `RestTemplate` 实例及服务接口调用等步骤,帮助开发者构建高效、稳定的应用。随着业务扩展,掌握负载均衡技术将愈发关键。
383 6
|
11月前
|
机器学习/深度学习 数据采集 算法
多维偏好分析及其在实际决策中的应用:基于PCA-KMeans的数据降维与模式识别方法
多维偏好分析(MPA)是市场营销、心理学和公共政策等领域广泛应用的工具,用于研究复杂偏好决策过程。本文通过主成分分析(PCA)和K均值聚类算法对鸢尾花数据集进行降维和模式识别,展示了PCA在保留95.8%方差的同时实现物种分类的有效性,K均值聚类结果与实际物种分类高度一致。该方法揭示了高维数据中的隐含模式,为各领域的实际决策提供了可靠的分析框架,具有重要的应用价值。研究表明,PCA和聚类分析能够有效简化和理解高维偏好数据,帮助决策者制定更有针对性的策略。
449 3
|
网络协议
逆向学习网络篇:心跳包与TCP服务器
逆向学习网络篇:心跳包与TCP服务器
589 0
|
缓存 测试技术 API
电商平台 API 接入技术要点深度剖析
本文介绍了高效使用电商平台API的关键步骤。首先,深入理解API文档,明确功能权限与参数格式要求;其次,选择合适的接入方式,如HTTP/HTTPS协议和RESTful API;接着,实施身份验证与授权机制,确保数据安全传输;此外,还需关注性能优化、安全防护、监控与日志记录,以提升系统稳定性和响应速度;最后,进行充分测试与调试,并关注API版本更新,确保长期兼容性。
|
算法 安全 网络安全
理解经典加密算法
【6月更文挑战第22天】本文介绍加密与安全哈希典型算法,包括对称加密或非对称加密,以及python实现的例子。
444 5
理解经典加密算法
|
并行计算 算法 Python
Dantzig-Wolfe分解算法解释与Python代码示例
Dantzig-Wolfe分解算法解释与Python代码示例
|
JSON 测试技术 C#
C#/.NET/.NET Core优秀项目框架推荐榜单
C#/.NET/.NET Core优秀项目框架推荐榜单
794 0
|
SQL 存储 关系型数据库
MySQL数据库——锁-表级锁(表锁、元数据锁、意向锁)
MySQL数据库——锁-表级锁(表锁、元数据锁、意向锁)
870 0
|
SQL Oracle 关系型数据库
实时计算 Flink版操作报错合集之连接器换成2.4.2之后,mysql作业一直报错如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
465 3