《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——二、数据导入导出与同步链路搭建(下)

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——二、数据导入导出与同步链路搭建(下)

更多精彩内容,欢迎观看:

《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB MySQL版解析与实践(下)——二、数据导入导出与同步链路搭建(上)https://developer.aliyun.com/article/1222976?spm=a2c6h.12873581.technical-group.dArticle1222976.7f81b096nfeL5J


3) DML外表式数据导入导出-MaxCompute

 

操作步骤

 

确定目标和源表:MaxCompute/AnalyticDB数据表

创建映射表:在AnalyticDB中创建该数据表的映射表

DML命令导出:INSERTOVERWRITEINTO

 

外部表主要参数

 

ENGINE='ODPS' ---存储引擎是 MaxCompute
TABLE_PROPERTIES=’{
"endpoint": "http://service.cn.maxcompute.aliyun-inc.com/api" ---MaxCompute 的
EndPoint (域名节点)
"accessid": "LTAIF***5FSE", ---访问 MaxCompute 的 AccessKey ID
"accesskey": "Ccw***iWjv", ---对应的 ID 的 Access key Secret
"project name": "odps_project1", ---MaxCompute 中的工作空间名称
"tablename": "xxx_xxx" ---MaxCompute 中的数据表名称
}'

 

说明

目前仅支持AnalyticDB MySQL通过MaxCompute的VPC网络Endpoint访问MaxCompute。

 

4) DML外表式数据导入导出-OSS

 

操作步骤

 

确定目标和源表:

ü OSS:是文件形式存储,将数据加载到ADB中

ü AnalyticDB:也可以将ADB表中的数据导出到OSS文件中

创建映射表:AnalyticDB中创建该数据表的映射表

DML命令导出:INSERT(OVERWRITE)INTO

 

外部表主要参数

 

ENGINE='OSS' ---存储引擎是 OSS
TABLEPROPERTES='{
"endpoint": "oss-cn-xxxxxx-internal.aliyuncs.com", ---OSS 的 EndPoint (域名节点)
"ur" /bucket-name/xxx/ --OSS 中文件夹的地址,以/结尾
"accessid": "LTAlF****5FSE", ---访问 OSS 文件的 Access Key ID
"accesskey": "CCW**iWjV", ---访问 OSS 文件的 Access Key Secret
"delimiter": ";" ---定义 OSS 中数据文件的列分隔符
}'

 

说明

OSS与AnalyticDB MySQL所属Region相同,不能跨Region导入导出。

 

4. 数据同步

 

1) RDS到ADB同步链路整体介绍

 

数据导入导出是一次性的、不能实时观察到元数据的改变,可以通过DTS数据传输服务搭建同步链路,实现对数据源实时数据改变的感知。

image.png

 

DTS:数据传输服务(Data Transmission Service),支持关系型数据库、NoSQL及大数据(OLAP)等数据源间的数据传输。

可通过DTS同步多种数据源数据到AnalyticDB MySQL(下文简称ADB),数据源包括RDS MySQL、PolarDB MySQL、PolarDB-X等,实现交互式BI分析和数仓迁移。

本教程重点介绍RDS MySQL到ADB的同步流程,其他数据源同步流程类似。

 

2) 数据同步步骤

 

数据同步由结构初始化、全量同步、增量同步三个步骤组成。

image.png

 

如图,数据存在RDS MySQL中,数据需要先在AnalyticDB MySQL中完成RDS MySQL的结构初始化,然后将RDS MySQL中全量数据同步到AnalyticDB MySQL中,最后通过增量同步保证数据的完整一致性。

 

a) 结构初始化

 

结构初始化是同步的第一个环节,即在ADB端创建与源MySQL对应的表结构。

 

首先,确认MySQL和ADB间的表结构关系。

然后,根据配置的表结构信息,DTS会自动在ADB端创建表,指定表的主键列和分布列,DTS会根据这些信息,加上其他列的信息,在AnalyticDB MySQL端建表。

分布列是AnalyticDB MySQL的表结构属性,ADB会根据该列把数据在多个节点上进行分布式存储。

注意,源端必须存在主键列,否则无法正确同步数据。

 

b) 全量同步

 

在结构初始化后,DTS会进行全量同步,然后在此基础上,再基于BinLog进行增量同步。

全量同步的方法是基于主键划分区间,然后并行同步到ADB中,可以简单理解为按主键范围把数据从MySQL中查询出来,并写入到ADB中,这样可以实现高效的并行写,加快全量同步性能。

image.png

 

为什么需要全量同步?

 MySQL中存在大量历史数据,这些数据对应的BinLog或许已经被删除,无法通过重放BinLog来同步这部分数据。

 同时,并行、批量拉取数据并写入ADB,效率也比逐行解析BinLog要高。

 

c) 增量同步

 

完成结构初始化和全量同步,则进入增量同步阶段。

 

首先,MySQL端的修改会产生BinLog,DTS通过捕获并解析MySQL端的BinLog日志,转换为Insert/Update/Delete/Alter等语句,并在ADB端回放这些操作,实现MySQL到ADB的增量同步。

 

结构初始化、全量同步都是一次性的,增量同步则是持续的,只要MySQL端有变化,DTS就会捕获并同步到ADB端。

 

image.png

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
6月前
|
存储 SQL 关系型数据库
MySQL中binlog、redolog与undolog的不同之处解析
每个都扮演回答回溯与错误修正机构角色: BinLog像历史记载员详细记载每件大大小小事件; RedoLog则像紧急救援队伍遇见突發情況追踪最后活动轨迹尽力补救; UndoLog就类似时间机器可倒带历史让一切归位原始样貌同时兼具平行宇宙观察能让多人同时看见各自期望看见历程而互不干扰.
327 9
|
7月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
175 2
|
7月前
|
存储 SQL 关系型数据库
MySQL 核心知识与性能优化全解析
我整理的这份内容涵盖了 MySQL 诸多核心知识。包括查询语句的书写与执行顺序,多表查询的连接方式及内、外连接的区别。还讲了 CHAR 和 VARCHAR 的差异,索引的类型、底层结构、聚簇与非聚簇之分,以及回表查询、覆盖索引、左前缀原则和索引失效情形,还有建索引的取舍。对比了 MyISAM 和 InnoDB 存储引擎的不同,提及性能优化的多方面方法,以及超大分页处理、慢查询定位与分析等,最后提到了锁和分库分表可参考相关资料。
164 0
|
8月前
|
关系型数据库 MySQL
MySQL字符串拼接方法全解析
本文介绍了四种常用的字符串处理函数及其用法。方法一:CONCAT,用于基础拼接,参数含NULL时返回NULL;方法二:CONCAT_WS,带分隔符拼接,自动忽略NULL值;方法三:GROUP_CONCAT,适用于分组拼接,支持去重、排序和自定义分隔符;方法四:算术运算符拼接,仅适用于数值类型,字符串会尝试转为数值处理。通过示例展示了各函数的特点与应用场景。
|
10月前
|
SQL 运维 关系型数据库
MySQL Binlog 日志查看方法及查看内容解析
本文介绍了 MySQL 的 Binlog(二进制日志)功能及其使用方法。Binlog 记录了数据库的所有数据变更操作,如 INSERT、UPDATE 和 DELETE,对数据恢复、主从复制和审计至关重要。文章详细说明了如何开启 Binlog 功能、查看当前日志文件及内容,并解析了常见的事件类型,包括 Format_desc、Query、Table_map、Write_rows、Update_rows 和 Delete_rows 等,帮助用户掌握数据库变化历史,提升维护和排障能力。
|
存储 缓存 Cloud Native
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
|
SQL Cloud Native 关系型数据库
云原生数据仓库使用问题之分组优化如何实现
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
Cloud Native 关系型数据库 OLAP
云原生数据仓库操作报错合集之遇到“table does not exist”错误,该怎么办
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
SQL Cloud Native 关系型数据库
云原生数据仓库操作报错合集之遇到报错“DDL forbidden because backupTask is doing snapshot”如何处理
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
JSON Cloud Native 关系型数据库
云原生数据仓库操作报错合集之遇到报错 "ERROR: out of shared memory" ,该怎么办
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。

热门文章

最新文章

推荐镜像

更多