《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(中)

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(中)

更多精彩内容,欢迎观看:《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(上):

https://developer.aliyun.com/article/1222912?groupCode=certification


1. 权限管理

 

权限管理支持从实例、数据库、schema到object权限的控制。

 

1) 逻辑结构及其权限关系

 

实例权限:实例连接鉴权。

数据库权限:grant赋予是否允许连接或创造schema的权限和Revoke回收。

 

数据库级别权限包括:

是否允许连接数据库。

 是否允许在数据库中创建schema。

 默认允许public角色连接,即允许任何人连接。

 默认不允许除了超级用户和owner之外的任何人在数据库中创建schema。

 默认会自动创建名为public的schema,且允许任何人在里面创建对象。

 

schema权限:grant赋予允许查询schema中的对象和revoke回收。

 

schema级别权限包括:

 是否允许查看schema中的对象;

 是否允许在schema中创建对象;

 默认情况下新建的schema的权限不会赋予给public角色,因此除了超级用户和owner,任何人都没有权限查看schema中的对象或者在schema中新建对象。

 

object权限:grant赋予和revoke回收。

 

2) 权限管理:授予和撤销权限

 

授予权限的关键字:GRANT

 

GRANT权限ON对象类型对象名TO用户名,如:

 

 GRANT SELECT ON TABLE table TO user1;  --允许 user1 select table

 GRANT SELECT ON TABLE table TO public; --允许所有人 select table

 

撤销权限的关键字:REVOKE

 

REVOKE权限ON对象类型对象名FROM用户名,如:

 

 REVOKE SELECT ON TABLE table FROM user1; --不再允许 user1 select table

 

2. UDF与存储过程

 

1) UDF与存储过程概述

 

在AnalyticDB PostgreSQL中,创建UDF和存储过程都是采用CREATE FUNCTION语法。

不同于ORACLE、MYSQL等数据库,PostgreSQL中并没有专门用于创建存储过程的CREATE PROCEDURE语法。

以SQL过程语言PL/pgSQL用法最为广泛,最为贴近内核。

 

image.png

 

PL/pgSQL的功能特点

 

用于创建函数和触发器过程

为SQL语言增加控制结构

执行复杂的计算

继承所有用户定义类型、函数、操作符

定义为被服务器信任的语言

容易使用

 

2) PL/pgSQL基本结构介绍

 

AnalyticDB PostgreSQL函数通常结构如下:

 

CREATEFUNCTION  --函数名

CREATE FUNCTION somefunc(integer, text) RETURNS integer --返回类型

AS

functionfunction  --参数

function body text  --函数体

functionfunction

LANGUAGE plpgsql; --解释语言

 

3) 块结构介绍

 

PL/pgSQL是一个块结构语言,函数体由块结构组成,定义如下:

BLOCK[<<label>>][DECLARE  declarations]BEGIN  statementsEND [label];

  

注意

块中的每个声明和每条语句都是用一个分号终止。

块结构支持嵌套使用。子块用于逻辑分组,在子块中声明的变量在其范围之内,将屏蔽跟这个子块外部有着同样的名字的变量。

BEGIN之后不要分号。

END之后要分号。最外层的可缺省。

END后的标签要和块开始的标签保持一致。

所有关键字不区分大小写,默认转换成小写,除非被双引号引用。

注释的方法和普通SQL一样。

PL/pgSQL里用于语句块分组的 BEGIN/END 不是开始或者结束事务。

 

块结构示例

CREATE OR REPLACE FUNCTION somefunc()RETURNS integer AS $$
<<outerblack>>
DECLARE
quantity integer:=30;
BEGIN
RAISE NOTICE 'Quantity here is %', quantity;  -- Prints 30
Quantity:= 50;
--
--Create a subblock
--
DECLARE
quantity integer:80
BEGIN
RAISE NOTICE 'Quantity here is %', quantity;  -- Prints 80
RAISE NOTICE 'Outer quantity here is %', outerblock.quantity; --Prints 50
END;
RAISE NOTICE 'Quantity here is %, quantity; --Prints 50
RETURN quantity;
END;
$$LANGUAGE plpgsal;

  

4) 捕获异常

 

PL/pgSQL通过EXCEPTION从句捕获异常。

 

[<<label>>]
[DECLARE
  declarations]
BEGIN
  statements
EXCEPTION
WHEN condition [OR condition ...] THEN
handler_statements
[WHEN condition[OR condition ...] THEN
handler statements
...]
END;

 

注意

condition表示异常类别,参考errcodes:

https://help.aliyun.com/document_detail/205012.html

特殊的异常类别OTHERS,可以匹配所有类别的异常。

块中包含EXCEPTION从句,则能够形成一个子事务,并且能够在不影响外部事务的前提下回滚。

 

示例

 

CREATE OR REPLACE FUNCTION f_block_exception()
RETURNS integer
LANGUAGEplpgsql
AS Sfunction$
DECLARE
x integer:= 0;
y integer:= 0;
BEGIN
SELECT COUNT(*) INTO x FROM mytab WHERE lastname='zhang';
INSERT INTO mytab(firstname, lastname) VALUES('san','zhang);
DECLARE
msg text;
BEGIN
UPDATEmytab sET firstname: three'WHERElastnamzhang;
x:=x+1;
y:=x/0;  --Exception occurs
EXCEPTION WHEN OTHERS THEN
GET STACKED DIAGNOSTICS msg := MESSAGE_TEXT;
RAISE NOTICE 'Caught exception:%',msg;
RETURN x;
END;
END;
$function$;


 

image.png

 

5) UDF示例

 

创建表student,插入3条记录

 

create table student(name varchar(30), score float4);
insert into student values('张三',88),('李四,99),('王五,92);


创建函数将student记录转换成json格式

 

create or replace function f_student_to json(student)
returns json
language plpgsql
strict
as function$
declare
    stu alias for $1;
begin
    return row_to_json(stu);
end;
$function$;

 

创建操作符>!<使用f_student_to_json函数

 

create operator>!<(procedure=f_student_to_json,
leftarg=student);

 

使用操作符>!<遍历student表

selects>!<from students;


 更多精彩内容,欢迎观看:《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(下):

https://developer.aliyun.com/article/1222910?groupCode=certification

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
打赏
0
0
1
0
50
分享
相关文章
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
275 1
京东物流基于Flink & StarRocks的湖仓建设实践
光云科技 X AnalyticDB:构建 AI 时代下的云原生企业级数仓
AnalyticDB承载了光云海量数据的实时在线分析,为各个业务线的商家提供了丝滑的数据服务,实时物化视图、租户资源隔离、冷热分离等企业级特性,很好的解决了SaaS场景下的业务痛点,也平衡了成本。同时也基于通义+AnalyticDB研发了企业级智能客服、智能导购等行业解决方案,借助大模型和云计算为商家赋能。
187 17
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
141 0
中国联通网络资源湖仓一体应用实践
Hologres实时数仓在B站游戏的建设与实践
本文介绍了B站游戏业务中实时数据仓库的构建与优化过程。为满足日益增长的数据实时性需求,采用了Hologres作为核心组件优化传统Lambda架构,实现了存储层面的流批一体化及离线-实时数据的无缝衔接。文章详细描述了架构选型、分层设计(ODS、DWD、DIM、ADS)及关键技术挑战的解决方法,如高QPS点查、数据乱序重写等。目前,该实时数仓已广泛应用于运营分析、广告投放等多个场景,并计划进一步完善实时指标体系、扩展明细层应用及研发数据实时解析能力。
Hologres实时数仓在B站游戏的建设与实践
Hologres实时湖仓能力入门实践
本文由武润雪(栩染)撰写,介绍Hologres 3.0版本作为一体化实时湖仓平台的升级特性。其核心能力包括湖仓存储一体、多模式计算一体、分析服务一体及Data+AI一体,极大提升数据开发效率。文章详细解析了两种湖仓架构:MaxCompute + Hologres实现离线实时一体化,以及Hologres + DLF + OSS构建开放湖仓架构,并深入探讨元数据抽象、权限互通等重点功能,同时提供具体使用说明与Demo演示。
Dataphin深度评测:企业级数据中台的智能实践利器
Dataphin是一款以全链路治理、智能提效和高兼容性为核心的企业级数据中台工具,特别适用于中大型企业的复杂数据场景。其流批一体能力、资源监控工具及行业化模板库可显著提升数据治理水平并降低运维成本。通过周期补数据功能,历史数据修复效率提升约60%;智能建模功能使建模时间缩短50%。尽管在数据源支持(如SAP HANA、DB2)和用户体验上仍有改进空间,但其强大的功能使其成为构建企业级数据中台的优选工具,尤其适合零售、金融等行业需要高效数据治理与实时分析的企业。
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
本文将深入探讨基于 StarRocks 和 Iceberg 构建的云原生湖仓分析技术,详细解析两者结合如何实现高效的查询性能优化。内容涵盖 StarRocks Lakehouse 架构、与 Iceberg 的性能协同、最佳实践应用以及未来的发展规划,为您提供全面的技术解读。 作者:杨关锁,北京镜舟科技研发工程师
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
抖音集团电商流量实时数仓建设实践
本文基于抖音集团电商数据工程师姚遥在Flink Forward Asia 2024的分享,围绕电商流量数据处理展开。内容涵盖业务挑战、电商流量建模架构、流批一体实践、大流量任务调优及总结展望五个部分。通过数据建模与优化,实现效率、质量、成本和稳定性全面提升,数据质量达99%以上,任务性能提升70%。未来将聚焦自动化、低代码化与成本优化,探索更高效的流批一体化方案。
221 12
抖音集团电商流量实时数仓建设实践
客户说|保险极客引入阿里云AnalyticDB,多业务场景效率大幅提升
“通过引入AnalyticDB,我们在复杂数据查询和实时同步方面取得了显著突破,其分布式、弹性与云计算的优势得以充分体现,帮助企业快速响应业务变化,实现降本增效。AnalyticDB的卓越表现保障了保险极客数据服务的品质和效率。”
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问