《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(中)

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(中)

更多精彩内容,欢迎观看:《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(上):

https://developer.aliyun.com/article/1222912?groupCode=certification


1. 权限管理

 

权限管理支持从实例、数据库、schema到object权限的控制。

 

1) 逻辑结构及其权限关系

 

实例权限:实例连接鉴权。

数据库权限:grant赋予是否允许连接或创造schema的权限和Revoke回收。

 

数据库级别权限包括:

是否允许连接数据库。

 是否允许在数据库中创建schema。

 默认允许public角色连接,即允许任何人连接。

 默认不允许除了超级用户和owner之外的任何人在数据库中创建schema。

 默认会自动创建名为public的schema,且允许任何人在里面创建对象。

 

schema权限:grant赋予允许查询schema中的对象和revoke回收。

 

schema级别权限包括:

 是否允许查看schema中的对象;

 是否允许在schema中创建对象;

 默认情况下新建的schema的权限不会赋予给public角色,因此除了超级用户和owner,任何人都没有权限查看schema中的对象或者在schema中新建对象。

 

object权限:grant赋予和revoke回收。

 

2) 权限管理:授予和撤销权限

 

授予权限的关键字:GRANT

 

GRANT权限ON对象类型对象名TO用户名,如:

 

 GRANT SELECT ON TABLE table TO user1;  --允许 user1 select table

 GRANT SELECT ON TABLE table TO public; --允许所有人 select table

 

撤销权限的关键字:REVOKE

 

REVOKE权限ON对象类型对象名FROM用户名,如:

 

 REVOKE SELECT ON TABLE table FROM user1; --不再允许 user1 select table

 

2. UDF与存储过程

 

1) UDF与存储过程概述

 

在AnalyticDB PostgreSQL中,创建UDF和存储过程都是采用CREATE FUNCTION语法。

不同于ORACLE、MYSQL等数据库,PostgreSQL中并没有专门用于创建存储过程的CREATE PROCEDURE语法。

以SQL过程语言PL/pgSQL用法最为广泛,最为贴近内核。

 

image.png

 

PL/pgSQL的功能特点

 

用于创建函数和触发器过程

为SQL语言增加控制结构

执行复杂的计算

继承所有用户定义类型、函数、操作符

定义为被服务器信任的语言

容易使用

 

2) PL/pgSQL基本结构介绍

 

AnalyticDB PostgreSQL函数通常结构如下:

 

CREATEFUNCTION  --函数名

CREATE FUNCTION somefunc(integer, text) RETURNS integer --返回类型

AS

functionfunction  --参数

function body text  --函数体

functionfunction

LANGUAGE plpgsql; --解释语言

 

3) 块结构介绍

 

PL/pgSQL是一个块结构语言,函数体由块结构组成,定义如下:

BLOCK[<<label>>][DECLARE  declarations]BEGIN  statementsEND [label];

  

注意

块中的每个声明和每条语句都是用一个分号终止。

块结构支持嵌套使用。子块用于逻辑分组,在子块中声明的变量在其范围之内,将屏蔽跟这个子块外部有着同样的名字的变量。

BEGIN之后不要分号。

END之后要分号。最外层的可缺省。

END后的标签要和块开始的标签保持一致。

所有关键字不区分大小写,默认转换成小写,除非被双引号引用。

注释的方法和普通SQL一样。

PL/pgSQL里用于语句块分组的 BEGIN/END 不是开始或者结束事务。

 

块结构示例

CREATE OR REPLACE FUNCTION somefunc()RETURNS integer AS $$
<<outerblack>>
DECLARE
quantity integer:=30;
BEGIN
RAISE NOTICE 'Quantity here is %', quantity;  -- Prints 30
Quantity:= 50;
--
--Create a subblock
--
DECLARE
quantity integer:80
BEGIN
RAISE NOTICE 'Quantity here is %', quantity;  -- Prints 80
RAISE NOTICE 'Outer quantity here is %', outerblock.quantity; --Prints 50
END;
RAISE NOTICE 'Quantity here is %, quantity; --Prints 50
RETURN quantity;
END;
$$LANGUAGE plpgsal;

  

4) 捕获异常

 

PL/pgSQL通过EXCEPTION从句捕获异常。

 

[<<label>>]
[DECLARE
  declarations]
BEGIN
  statements
EXCEPTION
WHEN condition [OR condition ...] THEN
handler_statements
[WHEN condition[OR condition ...] THEN
handler statements
...]
END;

 

注意

condition表示异常类别,参考errcodes:

https://help.aliyun.com/document_detail/205012.html

特殊的异常类别OTHERS,可以匹配所有类别的异常。

块中包含EXCEPTION从句,则能够形成一个子事务,并且能够在不影响外部事务的前提下回滚。

 

示例

 

CREATE OR REPLACE FUNCTION f_block_exception()
RETURNS integer
LANGUAGEplpgsql
AS Sfunction$
DECLARE
x integer:= 0;
y integer:= 0;
BEGIN
SELECT COUNT(*) INTO x FROM mytab WHERE lastname='zhang';
INSERT INTO mytab(firstname, lastname) VALUES('san','zhang);
DECLARE
msg text;
BEGIN
UPDATEmytab sET firstname: three'WHERElastnamzhang;
x:=x+1;
y:=x/0;  --Exception occurs
EXCEPTION WHEN OTHERS THEN
GET STACKED DIAGNOSTICS msg := MESSAGE_TEXT;
RAISE NOTICE 'Caught exception:%',msg;
RETURN x;
END;
END;
$function$;


 

image.png

 

5) UDF示例

 

创建表student,插入3条记录

 

create table student(name varchar(30), score float4);
insert into student values('张三',88),('李四,99),('王五,92);


创建函数将student记录转换成json格式

 

create or replace function f_student_to json(student)
returns json
language plpgsql
strict
as function$
declare
    stu alias for $1;
begin
    return row_to_json(stu);
end;
$function$;

 

创建操作符>!<使用f_student_to_json函数

 

create operator>!<(procedure=f_student_to_json,
leftarg=student);

 

使用操作符>!<遍历student表

selects>!<from students;


 更多精彩内容,欢迎观看:《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(下):

https://developer.aliyun.com/article/1222910?groupCode=certification

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
1月前
|
人工智能 关系型数据库 MySQL
AnalyticDB MySQL版:云原生离在线一体化数据仓库支持实时业务决策
AnalyticDB MySQL版是阿里云推出的云原生离在线一体化数据仓库,支持实时业务决策。产品定位为兼具数据库应用性和大数据处理能力的数仓,适用于大规模数据分析场景。核心技术包括混合负载、异构加速、智能弹性与硬件优化及AI集成,支持流批一体架构和物化视图等功能,帮助用户实现高效、低成本的数据处理与分析。通过存算分离和智能调度,AnalyticDB MySQL可在复杂查询和突发流量下提供卓越性能,并结合AI技术提升数据价值挖掘能力。
57 16
|
1月前
|
存储 人工智能 Cloud Native
NAS深度解析:面向云原生应用的文件存储
本文深入解析了面向云原生应用的文件存储NAS,由阿里云专家分享。内容涵盖Cloud Native与AI浪潮下的技术创新,包括高性能、弹性伸缩、成本优化及数据安全等方面。针对云原生应用的特点,NAS在Serverless生态中不断演进,提供多种产品规格以满足不同需求,如极速型NAS、归档存储等,确保用户在高并发场景下获得稳定低延时的存储体验。同时,通过优化挂载参数和容器访问策略,提升整体性能与可用性。
59 11
|
3月前
|
存储 Cloud Native 块存储
EBS深度解析:云原生时代企业级块存储
企业上云的策略,从 Cloud-Hosting 转向 Serverless 架构。块存储作为企业应用上云的核心存储产品,将通过 Serverless 化来加速新的计算范式全面落地。在本话题中,我们将会介绍阿里云块存储企业级能力的创新,深入解析背后的技术细节,分享对未来趋势的判断。
295 2
|
3月前
|
Kubernetes Cloud Native 云计算
云原生技术深度解析:重塑企业IT架构的未来####
本文深入探讨了云原生技术的核心理念、关键技术组件及其对企业IT架构转型的深远影响。通过剖析Kubernetes、微服务、容器化等核心技术,本文揭示了云原生如何提升应用的灵活性、可扩展性和可维护性,助力企业在数字化转型中保持领先地位。 ####
|
3月前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
3月前
|
Kubernetes Cloud Native 调度
云原生批量任务编排引擎Argo Workflows发布3.6,一文解析关键新特性
Argo Workflows是CNCF毕业项目,最受欢迎的云原生工作流引擎,专为Kubernetes上编排批量任务而设计,本文主要对最新发布的Argo Workflows 3.6版本的关键新特性做一个深入的解析。
|
3月前
|
机器学习/深度学习 存储 SQL
数据仓库革新:Snowflake在云数据平台中的创新实践
【10月更文挑战第27天】Snowflake作为云原生数据仓库的领导者,以其多租户、事务性、安全的特性,支持高度可扩展性和弹性,全面兼容SQL及多种数据类型。本文探讨了Snowflake在现代化数据仓库迁移、实时数据分析、数据存储与管理及机器学习集成等领域的创新实践和应用案例,展示了其在云数据平台中的强大优势和未来潜力。
165 2
|
3月前
|
存储 运维 Cloud Native
数据仓库革新:Snowflake在云数据平台中的创新实践
【10月更文挑战第26天】随着大数据时代的到来,数据仓库正经历重大变革。本文探讨了Snowflake在云数据平台中的创新应用,通过弹性扩展、高性能查询、数据安全、多数据源接入和云原生架构等最佳实践,展示了其独特优势,帮助企业提升数据处理和分析效率,保障数据安全,降低运维成本,推动业务快速发展。
134 2
|
关系型数据库 分布式数据库 PolarDB
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
《阿里云产品手册2022-2023 版》——PolarDB for PostgreSQL
397 0
|
存储 缓存 关系型数据库

推荐镜像

更多