【机器学习】分类模型评价指标(混淆矩阵、ROC)(已修改,放心看)

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【机器学习】分类模型评价指标(混淆矩阵、ROC)(已修改,放心看)

分类模型的评价指标:交叉熵、混淆矩阵、ROC曲线


交叉熵


根据上文:Logistic回归—学习笔记,从KL散度了解到,当交叉熵值越小,预测模型越接近真实模型,固然可以用交叉熵作为度量模型优化算法效果的一个指标

image.png

交叉熵是度量优化算法效果的一个相对指标,可以用于对比不同算法的效果,但它不适用于判断单个算法的预测效果 。

我的理解:交叉熵可以用来比较不同模型的优劣,而不适用对单一模型的预测效果的判定


混淆矩阵(本身不是评价指标,只是一个特殊的矩阵)


混淆矩阵:


实际为正例
实际为反例
预测为正例 TP FP
预测为反例 FN TN


  • T:预测标签和实际标签相同(预测正确)
  • F:预测标签和实际标签不相同(预测错误)
  • P:预测标签为正例
  • N:预测标签为反例


准确率(Accuracy)

image.png

:预测正确(T)占所有样本的比例

在整体样本中,预测正确的样本比例


精准率(Precision)

image.png

:预测和实际标签都为正例(TP)占所有正例样本的比例

预测正例样本中,预测正确的比例


召回率(Recall)


image.png

:预测和实际标签都为正例(TP)占所有预测标签为正例的比例

实际正例样本中,被预测正确的比例


F1值(F1-score)


image.png

:F1值是一种常用的分类模型评价指标,它综合了模型的准确率和召回率两个指标。


F1值越大,说明模型在同时考虑准确率和召回率时表现越好。当一个分类器的precision和recall都很高时,F1值也会相应地很高;但是如果一个指标很高而另一个指标很低,则F1值会降低。因此,F1值可以作为评估二分类问题解决方案优劣的综合指标。


这个还是挺重要的

下面是一个二分类问题的混淆矩阵例子:

预测/实际 实际为正例 实际为反例
预测为正例 30 10
预测为反例 20 40

解释:该混淆矩阵表示模型在测试数据集上共有100个样本,其中实际为正例的有50个,实际为反例的有50个。模型将其中30个正例正确地预测为正例,20个正例错误地预测为反例;将其中40个反例正确地预测为反例,10个反例错误地预测为正例。


通过混淆矩阵可以计算出多种分类指标,例如:


准确率(Accuracy):预测正确的样本数占总样本数的比例,即 (30+40)/(30+20+10+40) = 70%

精确率(Precision):预测为正例且实际为正例的样本数占预测为正例的样本数的比例,即 30/(30+20) = 60%

召回率(Recall):预测为正例且实际为正例的样本数占实际为正例的样本数的比例,即 30/(30+10) = 75%

F1值(F1-score):精确率和召回率的调和平均数,即 2 * Precision * Recall / (Precision + Recall) = 66.7%


ROC曲线


 ROC曲线(Receiver Operating Characteristic Curve)是一种常用的二分类模型性能评估工具,其横轴为假正率(False Positive Rate, FPR),纵轴为真正率(True Positive Rate, TPR),ROC曲线的绘制是通过将不同阈值下的真正率和假正率作为坐标点绘制而成。

daadb0f579a64dc2b3fd6a8e5d115b95_95b7161c286c42a48277591746323247.png

19b02656ec83e84589a926daa7ed826d_fe69b2626fc94c698b36bb3c316a7f7b.png


在ROC曲线上,理想情况下一个好的分类器应该尽可能靠近左上角,即TPR高,FPR低。而对于随机分类器,则会沿着y=x的直线进行绘制,代表了没有区分能力的分类器所呈现出来的性能。


另外,ROC曲线下面的面积AUC(Area Under the ROC Curve)也是评估分类器性能的指标之一,其数值范围在0.5到1之间,数值越接近1则代表分类器性能越好。


推荐视频:ROC曲线详解


相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
【人工智能】机器学习、分类问题和逻辑回归的基本概念、步骤、特点以及多分类问题的处理方法
机器学习是人工智能的一个核心分支,它专注于开发算法,使计算机系统能够自动地从数据中学习并改进其性能,而无需进行明确的编程。这些算法能够识别数据中的模式,并利用这些模式来做出预测或决策。机器学习的主要应用领域包括自然语言处理、计算机视觉、推荐系统、金融预测、医疗诊断等。
4 1
|
13天前
|
机器学习/深度学习 算法
【机器学习】简单解释贝叶斯公式和朴素贝叶斯分类?(面试回答)
简要解释了贝叶斯公式及其在朴素贝叶斯分类算法中的应用,包括算法的基本原理和步骤。
22 1
|
16天前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
15 0
|
2月前
|
机器学习/深度学习 算法
机器学习方法分类
【6月更文挑战第14天】机器学习方法分类。
41 2
|
2月前
|
机器学习/深度学习 分布式计算 算法
在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)
【6月更文挑战第28天】在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)、数据规模与特性(大数据可能适合分布式算法或深度学习)、性能需求(准确性、速度、可解释性)、资源限制(计算与内存)、领域知识应用以及实验验证(交叉验证、模型比较)。迭代过程包括数据探索、模型构建、评估和优化,结合业务需求进行决策。
34 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
使用Python和Scikit-learn实现机器学习分类任务
使用Python和Scikit-learn实现机器学习分类任务
74 1
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】逻辑回归:智能垃圾邮件分类实例
【机器学习】逻辑回归:智能垃圾邮件分类实例
103 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】Voting集成学习算法:分类任务中的新利器
【机器学习】Voting集成学习算法:分类任务中的新利器
37 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【机器学习】概率模型在机器学习中的应用:以朴素贝叶斯分类去为例
【机器学习】概率模型在机器学习中的应用:以朴素贝叶斯分类去为例
46 0
|
2月前
|
机器学习/深度学习 算法 数据可视化
【机器学习】分类与预测算法的评价与优化
【机器学习】分类与预测算法的评价与优化
60 0

相关产品

  • 人工智能平台 PAI