一日一技:Python多线程的事件监控

简介: 一日一技:Python多线程的事件监控

摄影:产品经理沙拉

设想这样一个场景:

你创建了10个子线程,每个子线程分别爬一个网站,一开始所有子线程都是阻塞等待。一旦某个事件发生:例如有人在网页上点了一个按钮,或者某人在命令行输入了一个命令,10个爬虫同时开始工作。

肯定有人会想到用Redis来实现这个开关:所有子线程全部监控Redis中名为start_crawl的字符串,如果这个字符串不存在,或者为0,那么就等待1秒钟,再继续检查。如果这个字符串为1,那么就开始运行。

代码片段可以简写为:

import time
import redis
client = redis.Redis()
while client.get('start_crawl') != 1:
    print('继续等待')
    time.sleep(1)

这样做确实可以达到目的,不过每一个子线程都会频繁检查Redis。

实际上,在Python的多线程中,有一个Event模块,天然就是用来实现这个目的的。

Event是一个能在多线程中共用的对象,一开始它包含一个为False的信号标志,一旦在任一一个线程里面把这个标记改为True,那么所有的线程都会看到这个标记变成了True

我们通过一段代码来说明它的使用方法:

import threading
import time
class spider(threading.Thread):
    def __init__(self, n, event):
        super().__init__()
        self.n = n
        self.event = event
    def run(self):
        print(f'第{self.n}号爬虫已就位!')
        self.event.wait()
        print(f'信号标记变为True!!第{self.n}号爬虫开始运行')
eve = threading.Event()
for num in range(10):
    crawler = spider(num, eve)
    crawler.start()
input('按下回车键,启动所有爬虫!')
eve.set()
time.sleep(10)

运行效果如下图所示:

在这段代码中,线程spider在运行以后,会运行到self.event.wait()这一行,然后10个子线程会全部阻塞在这里。而这里的self.event,就是主线程中eve = threading.Event()生成的对象传入进去的。

在主线程里面,当执行了eve.set()后,所有子线程的阻塞会被同时解除,于是子线程就可以继续运行了。

目录
相关文章
|
2月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
132 5
|
5月前
|
人工智能 安全 调度
Python并发编程之线程同步详解
并发编程在Python中至关重要,线程同步确保多线程程序正确运行。本文详解线程同步机制,包括互斥锁、信号量、事件、条件变量和队列,探讨全局解释器锁(GIL)的影响及解决线程同步问题的最佳实践,如避免全局变量、使用线程安全数据结构、精细化锁的使用等。通过示例代码帮助开发者理解并提升多线程程序的性能与可靠性。
199 0
|
5月前
|
存储 运维 监控
基于跳表数据结构的局域网上网记录监控时序查询优化算法研究与 Python 实现
本文探讨跳表(Skip List)在局域网上网记录监控中的应用,分析其在快速范围查询、去重与异常检测中的优势,并提供 Python 实现示例,为高效处理海量时序数据提供参考。
102 0
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
290 0
|
4月前
|
数据采集 消息中间件 并行计算
Python多线程与多进程性能对比:从原理到实战的深度解析
在Python编程中,多线程与多进程是提升并发性能的关键手段。本文通过实验数据、代码示例和通俗比喻,深入解析两者在不同任务类型下的性能表现,帮助开发者科学选择并发策略,优化程序效率。
303 1
|
5月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
5月前
|
数据采集 存储 Java
多线程Python爬虫:加速大规模学术文献采集
多线程Python爬虫:加速大规模学术文献采集
|
2月前
|
Java
如何在Java中进行多线程编程
Java多线程编程常用方式包括:继承Thread类、实现Runnable接口、Callable接口(可返回结果)及使用线程池。推荐线程池以提升性能,避免频繁创建线程。结合同步与通信机制,可有效管理并发任务。
165 6
|
5月前
|
Java API 微服务
为什么虚拟线程将改变Java并发编程?
为什么虚拟线程将改变Java并发编程?
306 83
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
262 16

热门文章

最新文章

推荐镜像

更多