7 Papers & Radios | 李德毅院士认知物理学前瞻性观点论文;AI从零开始学会玩我的世界

简介: 7 Papers & Radios | 李德毅院士认知物理学前瞻性观点论文;AI从零开始学会玩我的世界

本周论文包括李德毅院士前瞻性观点论文:《认知物理学 —— 薛定谔、图灵和维纳的启示和超越》;AI 从零开始学会玩《我的世界》,DeepMind AI 通用化取得突破。


目录:

1. STAR: SQL Guided Pre-Training for Context-dependent Text-to-SQL Parsing2. Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening3. Cognitive Physics - The Enlightenment by Schrödinger, Turing, Wiener and Beyond4. Performance of ChatGPT on USMLE: Potential for AI-Assisted Medical Education Using Large Language Models5. Mastering Diverse Domains through World Models6. ParkPredict+: Multimodal Intent and Motion Prediction for Vehicles in Parking Lots with CNN and Transformer7. ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders8. ArXiv Weekly Radiostation:NLP、CV、ML 更多精选论文(附音频)

论文 1:STAR: SQL Guided Pre-Training for Context-dependent Text-to-SQL Parsing


摘要:近期,阿里巴巴达摩院联合中国科学院深圳先进技术研究院提出面向多轮 Text-to-SQL 语义解析的 SQL 查询语句导向型预训练模型 STAR。截至目前,STAR 已连续 10 个月占据 SParC 和 CoSQL 两大榜单的第一名。论文已被自然语言处理领域国际会议 EMNLP 2022 Findings 接收。如下为一个上下文依赖的多轮 Text-to-SQL 解析例子。

推荐:登顶对话式语义解析国际权威榜单 SParC 和 CoSQL,全新多轮对话表格知识预训练模型 STAR 解读。

论文 2:Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening


摘要:本文首先提出了新型多模态机器学习模型 C.Origami 来预测特定细胞类型的染色质构象,并基于遗传筛选的原理提出了全新的高通量计算遗传筛选 (in silico genetic screening, ISGS) 方法。C.Origami 模型分为三个部分,处理并压缩 DNA 及基因组信息的编码器,Transformer 中间层和输出 Hi-C 解码器。

推荐:Nature 子刊 | 谭济民、夏波等提出基因组构象预测模型及高通量计算遗传筛选方法。

论文 3:Cognitive Physics - The Enlightenment by Schrödinger, Turing, Wiener and Beyond


摘要:2023 年 1 月 3 日,著名人工智能学家,中国工程院院士、欧亚科学院院士,中国人工智能学会名誉理事长李德毅在 Science 伙伴期刊 Intelligent Computing 发表前瞻性观点论文《认知物理学 —— 薛定谔、图灵和维纳的启示和超越》。论文回顾了 20 世纪上半叶,控制论之父维纳(1894-1964)、量子力学之父薛定谔(1887-1961)和人工智能之父图灵(1912-1954)三位杰出学者为人类留下的五篇经典之作,并受其启发,展望未来以负熵为生、可交互、会学习、自成长的智能机器,为今后机器智能的发展奠定了基础和方向。下图为可交互、会学习、自成长的机器运行流程。

推荐:李德毅院士前瞻性观点论文:《认知物理学 —— 薛定谔、图灵和维纳的启示和超越》。

论文 4:Performance of ChatGPT on USMLE: Potential for AI-Assisted Medical Education Using Large Language Models


摘要:ChatGPT 自发布以来一直受到关注,被认为是当前最强大的语言模型之一。它的文本生成能力已经不输人类,甚至有机器学习顶会为此明令禁止研究者使用 ChatGPT 编写论文。

但是近期有一篇论文居然在作者一栏明确署名 ChatGPT,这是怎么回事?这篇论文是发表在医学研究论文平台 medRxiv 上的《Performance of ChatGPT on USMLE: Potential for AI-Assisted Medical Education Using Large Language Models》,ChatGPT 是论文的第三作者。

推荐:一位论文作者火了,ChatGPT 等大型语言模型何时能成为论文合著者?

论文 5:Mastering Diverse Domains through World Models


摘要:通用智能需要解决多个领域的任务。人们认为强化学习算法具有这种潜力,但它一直受到为新任务调整所需资源和知识的阻碍。在 DeepMind 的一项新研究中,研究人员展示了基于世界模型的通用可扩展的算法 DreamerV3,它在具有固定超参数的广泛领域中优于以前的方法。

DreamerV3 符合的领域包括连续和离散动作、视觉和低维输入、2D 和 3D 世界、不同的数据量、奖励频率和奖励等级。值得一提的是,DreamerV3 是第一个在没有人类数据或主动教育的情况下从零开始在《我的世界》(Minecraft)中收集钻石的算法。研究人员表示,这样的通用算法可以使强化学习得到广泛应用,并有望扩展到硬决策问题。

推荐:AI 从零开始学会玩《我的世界》,DeepMind AI 通用化取得突破。

论文 6:ParkPredict+: Multimodal Intent and Motion Prediction for Vehicles in Parking Lots with CNN and Transformer


摘要:Dragon Lake Parking (DLP) 数据集以无人机正射航拍视角,提供了大量经过标注的高清 4K 视频和轨迹数据,记录了在停车场环境内,不同类型的车辆、行人和自行车的运动及交互行为。数据集时长约 3.5 小时,采样率为 25Hz,覆盖区域面积约为 140 m x 80 m,包含约 400 个停车位,共记录了 5188 个主体。数据集提供两种格式:JSON 和原视频 + 标注,可服务的研究方向包括:大规模高精度目标识别和追踪、空闲车位检测、车辆和行人的行为和轨迹预测、模仿学习等。

推荐:伯克利开源首个泊车场景下的高清数据集和预测模型,支持目标识别、轨迹预测。

论文 7:ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders


摘要:来自 KAIST、Meta、纽约大学的研究者(包括 ConvNeXt 一作刘壮、ResNeXt 一作谢赛宁)提出在同一框架下共同设计网络架构和掩码自编码器,这样做的目的是使基于掩码的自监督学习能够适用于 ConvNeXt 模型,并获得可与 transformer 媲美的结果。

推荐:ConvNeXt V2 来了,仅用最简单的卷积架构,性能不输 Transformer。

相关文章
|
6天前
|
机器学习/深度学习 人工智能 资源调度
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
本文探讨智能家居中AI决策的可解释性,提出以人为中心的XAI框架。通过SHAP、DeepLIFT等技术提升模型透明度,结合用户认知与需求,构建三层解释体系,增强信任与交互效能。
65 19
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
|
6月前
|
人工智能 数据可视化 数据挖掘
AI竟能独立完成顶会论文!The AI Scientist-v2:开源端到端AI自主科研系统,自动探索科学假设生成论文
The AI Scientist-v2 是由 Sakana AI 等机构开发的端到端自主科研系统,通过树搜索算法与视觉语言模型反馈实现科学假设生成、实验执行及论文撰写全流程自动化,其生成论文已通过国际顶会同行评审。
379 34
AI竟能独立完成顶会论文!The AI Scientist-v2:开源端到端AI自主科研系统,自动探索科学假设生成论文
|
9天前
|
机器学习/深度学习 资源调度 算法框架/工具
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
46 10
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
还在想开题报告?SurveyGO卷姬:清华开源学术论文AI写作神器,一键生成文献综述
SurveyGO是清华与面壁智能联合开源的AI论文写作工具,采用LLMxMapReduce-V2技术实现文献智能聚合,能根据用户输入主题快速生成结构严谨、引用可靠的学术综述。
747 1
还在想开题报告?SurveyGO卷姬:清华开源学术论文AI写作神器,一键生成文献综述
|
27天前
|
人工智能 算法 开发者
2025年高教社杯E题——AI 辅助智能体测全国大学生数学建模(思路、代码、论文)
2025年高教社杯E题——AI 辅助智能体测全国大学生数学建模(思路、代码、论文)
285 1
|
6月前
|
人工智能 自然语言处理 算法
科研论文翻译神器!BabelDOC:开源AI工具让PDF论文秒变双语对照,公式图表全保留
BabelDOC 是一款专为科学论文设计的开源AI翻译工具,采用先进的无损解析技术和智能布局识别算法,能完美保留原文格式并生成双语对照翻译。
1894 67
科研论文翻译神器!BabelDOC:开源AI工具让PDF论文秒变双语对照,公式图表全保留
|
6月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
682 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
10天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
177 12
|
4天前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
|
6天前
|
设计模式 机器学习/深度学习 人工智能
AI-Native (AI原生)图解+秒懂: 什么是 AI-Native 应用(AI原生应用)?如何设计一个 AI原生应用?
AI-Native (AI原生)图解+秒懂: 什么是 AI-Native 应用(AI原生应用)?如何设计一个 AI原生应用?