【数据结构入门】二叉树的遍历(前序、中序、后序、层序)

简介: 【数据结构入门】二叉树的遍历(前序、中序、后序、层序)

二叉树遍历

什么是二叉树遍历:


二叉树遍历就是按照某种特定的规则,依次堆二叉树中的结点进行相应的操作,并且每个结点只操作一次。访问结点所做的操作依赖于具体的应用问题。遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。


我们以后看到二叉树应该这样去看待:把他看成根、左子树、右子树。


二叉树的遍历有:前序、中序、后序、层序遍历的递归结构遍历:


1.前序遍历(Preorder Traversal),也叫前根遍历:

2.中序遍历(Inorder Traversal),也叫中根遍历:

3.后序遍历(Post orderTraversal)也叫后根遍历:

4.层序遍历

1.png

2.png



前序遍历

下面是前序遍历的动态图。

3.gif

以下图为例进行代码的编写:

4.png

请看代码:


void PreOrder(BTNode* root)
{
  if (root == NULL)
  {
  printf("NULL ");
  return;
  }
  printf("%d ", root->data);
  PreOrder(root->left);
  PreOrder(root->right);
}


这是运行结果:

5.png


中序遍历

请看中序遍历的动态图:

6.gif


还是以下图进行举例:

7.png

请看代码:


//中序遍历
void InOrder(BTNode* root)
{
  if (root == NULL)
  {
  printf("NULL ");
  return;
  }
  InOrder(root->left);
  printf("%d ", root->data);
  InOrder(root->right);
}


下面是运行结果:


8.png

后序遍历

下面是后序遍历的动态图:

9.gif


还是以下图进行举例:


10.png

//后序遍历
void PostOrder(BTNode* root)
{
  if (root == NULL)
  {
  printf("NULL ");
  return;
  }
  PostOrder(root->left);
  PostOrder(root->right);
  printf("%d ", root->data);
}


请看运行结果:


11.png

前中后序总代码

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
  BTDataType data;
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
}BTNode;
//新建结点
BTNode* BuyNode(BTDataType x)
{
  BTNode* node = (BTNode*)malloc(sizeof(BTNode));
  if (node == NULL)
  {
  perror("malloc fail");
  return NULL;
  }
  node->data = x;
  node->left = NULL;
  node->right = NULL;
  return node;
}
BTNode* CreatTree()
{
  BTNode* node1 = BuyNode(1);
  BTNode* node2 = BuyNode(2);
  BTNode* node3 = BuyNode(3);
  BTNode* node4 = BuyNode(4);
  BTNode* node5 = BuyNode(5);
  BTNode* node6 = BuyNode(6);
  node1->left = node2;
  node1->right = node4;
  node2->left = node3;
  node4->left = node5;
  node4->right = node6;
  return node1;
}
//前序遍历
void PreOrder(BTNode* root)
{
  if (root == NULL)
  {
  printf("NULL ");
  return;
  }
  printf("%d ", root->data);
  PreOrder(root->left);
  PreOrder(root->right);
}
//中序遍历
void InOrder(BTNode* root)
{
  if (root == NULL)
  {
  printf("NULL ");
  return;
  }
  InOrder(root->left);
  printf("%d ", root->data);
  InOrder(root->right);
}
//后序遍历
void PostOrder(BTNode* root)
{
  if (root == NULL)
  {
  printf("NULL ");
  return;
  }
  PostOrder(root->left);
  PostOrder(root->right);
  printf("%d ", root->data);
}
int main()
{
  BTNode* root = CreatTree();
  //PreOrder(root);//前序遍历
  //InOrder(root);//中序遍历
  //PostOrder(root);//后序遍历
  return 0;
}


最后,其实前序、中序、后序的过程基本上就是一样的,即前序、中序、后序的递归过程是一样的,不一样的就是访问根的时机不一样。


层序遍历

层序遍历的话可以利用队列先进先出的特点来进行实现,出上一层,带入下一层。

所以这里的层序遍历就是利用队列来实现的。

10.gif

12.png



注意队列中的结点里面的data存的是树结点的指针。


层序遍历总代码

Quene.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef struct BinaryTreeNode* QDataType;
typedef struct QueueNode
{
  struct QueueNode* next;
  QDataType data;
}QueueNode;
typedef struct Queue
{
  QueueNode* head;
  QueueNode* tail;
}Queue;
void QueueInit(Queue* pq);
void QueueDestory(Queue* pq);
void QueuePush(Queue* pq,QDataType x);//插入数据
void QueuePop(Queue* pq);//删除数据
QDataType QueueFront(Queue* pq);//取队头的数据
QDataType QueueBack(Queue* pq);//取队尾的数据
int QueueSize(Queue* pq);//有多少个数据
bool QueueEmpty(Queue* pq);//判断队列是否为空

Queue.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"
//初始化
void QueueInit(Queue* pq)
{
  assert(pq);
  pq->head = NULL;
  pq->tail = NULL;
}
void QueueDestory(Queue* pq)
{
  assert(pq);
  QueueNode* cur = pq->head;
  while (cur)
  {
    QueueNode* next = cur->next;
    free(cur);
    cur = cur->next;
  }
  pq->head = pq->tail = NULL;
}
void QueuePush(Queue* pq, QDataType x)
{
  assert(pq);
  QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));
  newnode->data = x;
  newnode->next = NULL;
  if (pq->head == NULL)
  {
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = newnode;
  }
}
//删除
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  //if (pq->head == NULL)
  //{
  //  return;
  //}//温柔的处理
  QueueNode* next = pq->head->next;
  free(pq->head);
  pq->head = next;
  if (pq->head == NULL)
  {
    pq->tail=NULL;
  }
}
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->head == NULL;
}
QDataType QueueBack(Queue* pq)//取队尾的数据
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->tail->data;
}
QDataType QueueFront(Queue* pq)//取队头的数据
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->head->data;
}
int QueueSize(Queue* pq)//有多少个数据
{
  assert(pq);
  int n = 0;
  QueueNode* cur = pq->head;
  while (cur)
  {
    n++;
    cur = cur->next;
  }
  return n;
}

test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include"Queue.h"
typedef int BTDataType;
typedef struct BinaryTreeNode
{
  BTDataType data;
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
}BTNode;
//新建结点
BTNode* BuyNode(BTDataType x)
{
  BTNode* node = (BTNode*)malloc(sizeof(BTNode));
  if (node == NULL)
  {
    perror("malloc fail");
    return NULL;
  }
  node->data = x;
  node->left = NULL;
  node->right = NULL;
  return node;
}
BTNode* CreatTree()
{
  BTNode* node1 = BuyNode(1);
  BTNode* node2 = BuyNode(2);
  BTNode* node3 = BuyNode(3);
  BTNode* node4 = BuyNode(4);
  BTNode* node5 = BuyNode(5);
  BTNode* node6 = BuyNode(6);
  node1->left = node2;
  node1->right = node4;
  node2->left = node3;
  node4->left = node5;
  node4->right = node6;
  return node1;
}
//前序遍历
void PreOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  printf("%d ", root->data);
  PreOrder(root->left);
  PreOrder(root->right);
}
//中序遍历
void InOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  InOrder(root->left);
  printf("%d ", root->data);
  InOrder(root->right);
}
//后序遍历
void PostOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("NULL ");
    return;
  }
  PostOrder(root->left);
  PostOrder(root->right);
  printf("%d ", root->data);
}
int size = 0;
求树中结点个数法1
//int TreeSize(BTNode* root,int* psize)
//{
//  if (root == NULL)
//    return;
//  (*psize)++;
//  TreeSize(root->left, psize);
//  TreeSize(root->right, psize);
//}
//求树的结点个数法2
int TreeSize(BTNode* root)
{
  return root == NULL ? 0 :
    TreeSize(root->left)
    + TreeSize(root->right)
    + 1;
}
//求树的高度
int TreeHeight(BTNode* root)
{
  if (root == NULL)
    return 0;
  int leftHeight = TreeHeight(root->left);
  int rightHeight = TreeHeight(root->right);
  return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
int TreeKLevel(BTNode* root, int k)
{
  if (root == NULL)
    return 0;
  if (k == 1)
    return 1;
  int leftK = TreeKLevel(root->left, k - 1);
  int rightK = TreeKLevel(root->right, k - 1);
  return leftK + rightK;
}
//二叉树查找值为x的结点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
  if (root == NULL)
    return NULL;
  if (root->data == x)
    return root;
  BTNode* lret = BinaryTreeFind(root->left, x);
  if (lret)
    return lret;
  BTNode* rret = BinaryTreeFind(root->right, x);
  if (rret)
    return rret;
  return NULL;
}
//层序遍历
void LevelOrder(BTNode* root)
{
  Queue q;
  QueueInit(&q);
  if (root)
    QueuePush(&q, root);
  while (!QueueEmpty(&q))
  {
    BTNode* front = QueueFront(&q);
    //front指向的不是队列的结点,而是树的结点
    QueuePop(&q);
    printf("%d ", front->data);
    if (front->left)
      QueuePush(&q, front->left);
    if (front->right)
      QueuePush(&q, front->right);
  }
  QueueDestory(&q);
}
int main()
{
  BTNode* root = CreatTree();
  //PreOrder(root);//前序遍历
  //InOrder(root);//中序遍历
  //PostOrder(root);//后序遍历
  求树的结点法1
  /*int size1 = 0;
  TreeSize(root, &size1);
  printf("TreeSize:%d\n", size1);
  int size2 = 0;
  TreeSize(root, &size2);
  printf("TreeSize:%d\n", size2);*/
  求树的结点法2
  //printf("TreeSize:%d\n", TreeSize(root));
  //printf("TreeSize:%d\n", TreeSize(root));
  //printf("TreeSize:%d\n", TreeSize(root));
  求树的高度
  //printf("TreeHeight:%d\n", TreeHeight(root));
  //printf("TreeKLevel:%d\n", TreeKLevel(root, 1));
  二叉树查找值为x的结点
  //printf("BinaryTreeFind:%p\n", BinaryTreeFind(root, 5));
  //printf("BinaryTreeFind:%p\n", BinaryTreeFind(root, 0));
  //层序遍历
  LevelOrder(root);
  return 0;
}

以上就是二叉树遍历的四种方式(前序、中序、后序、层序)。说实话,内容还是有些难度的,这就更需要我们认真的进行学习并复习了。

加油,各位!!!

相关文章
|
6月前
|
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
157 10
 算法系列之数据结构-二叉树
|
8月前
|
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
173 12
|
8月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
159 10
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
240 3
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
【C++数据结构——图】图的遍历(头歌教学实验平台习题) 【合集】
本文介绍了图的遍历算法,包括深度优先遍历(DFS)和广度优先遍历(BFS)。深度优先遍历通过递归方式从起始节点深入探索图,适用于寻找路径、拓扑排序等场景;广度优先遍历则按层次逐层访问节点,适合无权图最短路径和网络爬虫等应用。文中提供了C++代码示例,演示了如何实现这两种遍历方法,并附有测试用例及结果,帮助读者理解和实践图的遍历算法。
299 0
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
246 4
|
10月前
|
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
212 59
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
39 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问