人工智能图像形状检测算法(一)

简介: 人工智能图像形状检测算法(一)

角点检测


在进行图像匹配的时,通常需要对两幅图像中的特征点进行匹配。为了保证匹配的准确性,选择的特征点必须具有其独特性,而图像的角点则经常被看成是一种不错的选择。由观察可知,角点往往是两天边缘的交点,它是两条边缘方向变换的一种表示,因此,其两个方向的梯度变化通常都比较大并且容易检测。人们通过在一个小小的窗口区域内观察像素点的灰度值大小来识别角点,如果向任何方向移动窗口都会引起较大的灰度变化,则该位置往往就是我们要找的角点。


Harris算子


对于角点检测,有很多的算法,其中Harris 算法是最常用的角点检测算法之一,算法依据的正是上图的直观判断。


要衡量在某个方向上的梯度变化大小,可定义图像在某个方向上灰度的变化E(u,v)。


E(u,v)=\Sigma_x_y w(x,y)(I(x+u,y+v)-I(x,y))^{2}\Sigma_x_y w(x,y)(I(x+u,y+v)-I(x,y))^{2}


其中w(x,y)为窗口函数,它可以是如图所示的加权函数,也可以是高斯函数。


9e23e85431f049a400d14a3783caaaba_bb64a832236f4e3b8282361c34fbea0c.png


向量(u,v)表示某个方向,以及在该方向上的位移。I(x,y)表示像素灰度值强度,范围为0~255,I(x+u,y+v)表示位移强度。由上述公式可知,我们要研究在哪个方向上图像灰度值变化最大,只需令E(u,v)的值最大即可,因为E(u,v)表示的是某个方向上图像灰度的变化。而求解问题,则可通过泰勒展开式:


I(x+u,y+v)=I(x,y)+uIx+vIy+O(x,y)I(x+u,y+v)=I(x,y)+uIx+vIy+O(x,y)


得到:


(I(x+u,y+v)−I(x,y)2)≈(uIx+vIy)2≈([u,v][IxIy])([Ix,Iy][uv])≈[uv][IxIxIyIxIxIyIyIy][uv](I(x+u,y+v)−I(x,y)2)≈(uIx+vIy)2≈([u,v][IxIy])([Ix,Iy][uv])≈[uv][IxIxIxIyIyIxIyIy][uv]


记上式最后结果为ΔΔ,则得到:E(u,v)=\sum _x_yw(x,y)\cdot \Delta =[u,v]M\begin{bmatrix} u\\v \end{bmatrix}E(u,v)=\sum _x_yw(x,y)\cdot \Delta =[u,v]M\begin{bmatrix} u\\v \end{bmatrix}


其中M为2*2的Harris矩阵,Ix和IyIx和Iy分别是x方向和y方向的图像导数(灰度值强度),则可得:M=\sum _x_yw(x,y)\begin{bmatrix} I_x^{2} &I_xI_y \\ I_yI_x & I_y^{2} \end{bmatrix}M=\sum _x_yw(x,y)\begin{bmatrix} I_x^{2} &I_xI_y \\ I_yI_x & I_y^{2} \end{bmatrix}


根据Harris矩阵来计算矩阵特征值λ1λ1,λ2λ2,并通过一个评分函数R来判断一个窗口中是否含有角点:


R=det(M)−k(trace(M)2)R=det(M)−k(trace(M)2)


其中,det(M)=λ1,λ2,trace(M)=λ1+λ2det(M)=λ1,λ2,trace(M)=λ1+λ2。λ1,λ2λ1,λ2皆为M的特征值。上述公式即为:


R=λ1λ2−K(λ1+λ2)2R=λ1λ2−K(λ1+λ2)2.


这些特征值决定了一个区域是否为角点,边缘或平面。


①.当λ1和λ2都很小时,|R|的值也很小,则该区域为平坦区域。


②.当λ1>>λ2,或者λ1<<λ2,则该区域为边缘。


③.当λ都很大时,且λ1≈λ2时,也很大,则该区域为角点。


因此,Harris角点检测可以“R>阈值”作为条件判断一个图像区域是否为为角点。J·西(J·Shi)和C·托马西(C·Tomasi)于1994年在其论文“Good Features to Track”中提出了一种对Harris角点检测算子的改进算法,也就是Shi—Tomasi角点检测算子。我们也可以通过goodFeaturesToTrack算法进行角点检测,它同样定义了评分函数R,也是用R值的大小来判断区域是否为特征点:


R=min(λ1λ2)R=min(λ1λ2)


我们这里就直接使用OPenCV中的角点检测函数。


函数原型:


cv2.cornerHarris(src,blocksize,ksize,k[,dst[,borderTypr]])


参数说明:


(1).src:目标图像。


(2).blocksize:窗口大小。


(3).ksize:Sobel的孔径参数(Aperture Parameter),也就是Sobel核的半径,如1,3,5,7。


(4).k:R公式中的k,默认取0.04。


基于Harris角点检测的示例代码:


import numpy as np
import cv2
#将图像导入将其转化为float类型,用于传递给Harris函数
filename='D:\Image\\four.jpg'
img=cv2.imread(filename)
gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray_img=np.float32(gray_img)
#对图像进行角点检测
Harris_detector=cv2.cornerHarris(gray_img,2,3,0.04)
#对图像进行膨胀处理,将灰度值增大(视觉上比较亮)的区域增强扩展,主要用来连通相似颜色或强度的区域
dst=cv2.dilate(Harris_detector,None)
#设置阈值
thres=0.01*dst.max()
#对角点进行红色标记
img[dst>thres]=[0,0,255]
cv2.imshow('Harris角点检测',img)
cv2.waitKey()


代码结果展示:


caaba200e3b611dca6f0a5c68daa865d_288e3d3e46a249c391321ca0df12f559.png


根据图像我们可以发现,角点的检测有些不太准确,只能检测较为明显的角点,并且存在很多的错误角点标记。于是,opencv便推出了更为精确的算法函数。


goodFeaturesToTrack算子


函数原型:


cv2.goodFeaturesToTack(image,maxCorners,qualityLevel,minDistance,[,corners[,mask[,blocksize[,useHarrisDetector[,k]]]])


参数说明如下:


(1).image:待检测目标图像


(2).maxCorners:最大数目的角点数


(3).qualityLevel:该参数指出最低可接受的角点质量,是一个百分数,实例中给0.01。


(4).minDistance:焦点之间最小的欧拉距离,避免得到相邻特征点。


(5).mask:可选参数,给出ROI。


利用goodFeaturesToTrack算法进行图像检测示例代码:


#goodFeaturesToTrack算法
import numpy as np
import cv2
#读入图像
filename='D:\Image\\four.jpg'
img=cv2.imread(filename)
img2=img
#将其转换为float型
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img_gray=np.float32(img_gray)
#得到角点坐标向量
goodFeatures_corners=cv2.goodFeaturesToTrack(img_gray,25,0.01,10)
goodFeatures_corners=np.int0(goodFeatures_corners)
for i in goodFeatures_corners:
    x,y=i.flatten()
    #用绿点标记角点
    cv2.circle(img2,(x,y),3,[0,255,],-1)
cv2.imshow('goodFreaturesToTack角点检测',img2)
cv2.waitKey()


993001d20ae20eda72852c8db8ac5b63_bc03ac9f42b1431b80b5883cab4f4d94.png


其中绿点表示角点,从两个算法检测结果来看,对于图像角点的标记,goodFeaturesToTrack算法更为精确,准确性高,但是也有误差。

相关文章
|
23天前
|
监控 安全 算法
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
|
2月前
|
编解码 算法
改进SIFT算法实现光学图像和SAR图像配准
改进SIFT算法实现光学图像和SAR图像配准
|
1月前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
260 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
19天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
1月前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
1月前
|
存储 监控 算法
基于文化优化算法图像量化(Matlab代码实现)
基于文化优化算法图像量化(Matlab代码实现)
|
1月前
|
存储 算法 生物认证
基于Zhang-Suen算法的图像细化处理FPGA实现,包含testbench和matlab验证程序
本项目基于Zhang-Suen算法实现图像细化处理,支持FPGA与MATLAB双平台验证。通过对比,FPGA细化效果与MATLAB一致,可有效减少图像数据量,便于后续识别与矢量化处理。算法适用于字符识别、指纹识别等领域,配套完整仿真代码及操作说明。
|
3月前
|
机器学习/深度学习 监控 算法
基于单尺度Retinex和多尺度Retinex的图像增强算法实现
基于单尺度Retinex(SSR)和多尺度Retinex(MSR)的图像增强算法实现
260 1
|
3月前
|
监控 算法 决策智能
基于盲源分离与贝叶斯非局部均值的图像降噪算法
基于盲源分离与贝叶斯非局部均值的图像降噪算法
102 0
|
7月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。

热门文章

最新文章