ICLR盲审阶段就被评审赞不绝口的论文:会是Transformer架构的一大创新吗?

简介: ICLR盲审阶段就被评审赞不绝口的论文:会是Transformer架构的一大创新吗?

首次!无残差连接或归一化层,也能成功训练深度transformer。


尽管取得了很多显著的成就,但训练深度神经网络(DNN)的实践进展在很大程度上独立于理论依据。大多数成功的现代 DNN 依赖残差连接和归一化层的特定排列,但如何在新架构中使用这些组件的一般原则仍然未知,并且它们在现有架构中的作用也依然未能完全搞清楚。


残差架构是最流行和成功的,最初是在卷积神经网络(CNN)的背景下开发的,后来自注意力网络中产生了无处不在的 transformer 架构。残差架构之所以取得成功,一种原因是与普通 DNN 相比具有更好的信号传播能力,其中信号传播指的是几何信息通过 DNN 层的传输,并由内核函数表示。


最近,使用信号传播原则来训练更深度的 DNN 并且残差架构中没有残差连接和 / 或归一化层的参与,成为了社区感兴趣的领域。原因有两个:首先验证了残差架构有效性的信号传播假设,从而阐明对 DNN 可解释性的理解;其次这可能会实现超越残差范式的 DNN 可训练性的一般原则和方法。


对于 CNN,Xiao et al. (2018)的工作表明,通过更好初始化提升的信号传播能够高效地训练普通深度网络,尽管与残差网络比速度显著降低。Martens et al. (2021) 的工作提出了 Deep Kernel Shaping (DKS),使用激活函数转换来控制信号传播,使用 K-FAC 等强二阶优化器在 ImageNet 上实现了普通网络和残差网络的训练速度相等。Zhang et al. (2022) 的工作将 DKS 扩展到了更大类的激活函数,在泛化方面也实现了接近相等。


信号传播中需要分析的关键量是 DNN 的初始化时间内核,或者更准确地说,是无限宽度限制下的近似内核。对于多层感知机(MLP)以及使用 Delta 初始化的 CNN,该内核可以编写为仅包含 2D 函数的简单层递归,以便于进行直接分析。跨层 transformer 的内核演化更加复杂,因此 DKS 等现有方法不适用 transformer 或实际上任何包含自注意力层的架构。


在 MLP 中,信号传播是通过查看(一维)内核的行为来判断的,而 transformer 中的信号传播可以通过查看(高维)内核矩阵在网络层中的演化来判断。


该研究必须避免一种情况:对角线元素随深度增加快速增长或收缩,这与不受控制的激活范数有关,可能导致饱和损失或数值问题。避免秩崩溃(rank collapse)对于深度 transformer 的可训练性是必要的,而是否可以训练深度无残差 transformer 仍是一个悬而未决的问题。


ICLR 2023 盲审阶段的这篇论文解决了这个问题,首次证明了无需残差连接或归一化层时也可能成功训练深度 transformer。为此,他们研究了深度无残差 transformer 中的信号传播和秩崩溃问题,并推导出三种方法来阻止它们。具体而言,方法中使用了以下组合:参数初始化、偏置矩阵和位置相关的重缩放,并强调了 transformer 中信号传播特有的几种复杂性,包括与位置编码和因果掩蔽的交互。研究者实证证明了他们的方法可以生成可训练的深度无残差 transformer。


在实验部分,在 WikiText-103 和 C4 数据集上,研究者展示了使用他们主要的方法——指数信号保持注意力(Exponential Signal Preserving Attention, E-SPA),可以通过延长大约五倍的训练时间使得标准 transformer 与文中无残差 transformer 的训练损失相当。此外通过将这一方法与残差连接结合,研究者还表明无归一化层的 transformer 能够实现与标准 transformer 相当的训练速度。



论文地址:https://openreview.net/pdf?id=NPrsUQgMjKK


对于这篇论文,Google AI 首席工程师 Rohan Anil 认为是 Transformer 架构向前迈出的一大步,还是一个基础性的改进。



构造无捷径可训练的深层 Transformer


迄今为止,纠正 Transformer 秩崩溃(rank collapse)的唯一策略依赖于残差连接,该方式跳过了自注意力层固有的可训练性问题。与此相反,该研究直接解决这个问题。首先通过注意力层更好地理解信号传播,然后根据见解(insights)进行修改,以在深度 transformer 中实现对忠实信号的传输,无论是否使用残差连接,都可以对信号进行训练。


具体而言,首先,该研究对仅存在注意力的深度 vanilla transformer 进行了一下简单设置,之后他们假设该 transformer 具有单一头(h = 1)设置或具有多头设置,其中注意力矩阵 A 在不同头之间不会变化。如果块 l≤L 初始化时有注意力矩阵 A_l,则最终块的表示形式为 X_L:



对于上式而言,如果采用正交初始化,那么就可以在初始化时正交。


在上述假设下,如果采用表示跨位置输入核矩阵,经过一些简化处理后,可以得到如下公式:



从这个简化公式(深度仅注意力 transformer 中的核矩阵)中,可以确定对 (A_l)_l 的三个要求:


必须在每个块中表现良好,避免退化情况,如秩崩溃和爆炸 / 消失的对角线值;

A_l 必须是元素非负 ∀l;

A_l 应该是下三角∀l,以便与因果掩码注意力兼容。


在接下来的 3.1 和 3.2 节中,该研究专注于寻找满足上述需求的注意力矩阵,他们提出了 3 种方法 E-SPA、U-SPA 和 Value-Skipinit,每种方法都用来控制 transformer 的注意力矩阵,即使在很深的深度也能实现忠实的信号传播。此外,3.3 节演示了如何修改 softmax 注意力以实现这些注意力矩阵。


下图中,该研究对提出的两个 SPA 方案进行了验证,U-SPA 和 E-SPA,结果显示即使在网络较深时也能成功地避免仅注意力 vanilla transformers 中的秩崩溃现象。



实验


WikiText-103 基线:首先,该研究验证了没有残差连接的标准深度 transformer 是不可训练的,即使它们有归一化层 (LN) 和 transformed 激活,但本文的方法可以解决这个问题。如图 2 所示,可以清楚地看到,从标准 transformer 中移除残差连接使其不可训练,训练损失稳定在 7.5 左右。正如图 1 所示,标准 transformer 遭受了秩崩溃。



另一方面,该研究提出的 E-SPA 方法优于 U-SPA 和 Value-Skipinit。然而,与本文无残差方法相比,带有残差和 LN 的默认 transformer 仍然保持训练速度优势。


在表 1 中,该研究使用提出的方法评估了 MLP 块中不同激活函数的影响,以及 LN 在无残差 transformer 的使用。可以看到在深度为 36 处,本文方法针对一系列激活实现了良好的训练性能:DKS-transformed GeLU、TAT-transformed Leaky ReLU 以及 untransformed GeLU ,但不是 untransformed Sigmoid。通过实验还看到,层归一化对于训练速度而言相对不重要,甚至在使用 SPA 时对 transformed activation 的激活有害,因为 SPA 已经具有控制激活规范的内置机制。



在图 3 中,我们看到一种不需要更多迭代就能匹配默认 transformer 训练损失的方法是使用归一化残差连接。



表 2 显示带有归一化残差和 LN 的 E-SPA 优于默认的 PreLN transformer。



下图 4(a)表明 E-SPA 再次优于其他方法;4(b)表明训练损失差距可以通过简单地增加训练时间来消除。




相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer架构:重塑现代AI的核心引擎
Transformer架构:重塑现代AI的核心引擎
432 98
|
1月前
|
机器学习/深度学习 人工智能 缓存
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
本文提出面向边缘通用智能的多大语言模型(Multi-LLM)系统,通过协同架构、信任机制与动态编排,突破传统边缘AI的局限。融合合作、竞争与集成三种范式,结合模型压缩、分布式推理与上下文优化技术,实现高效、可靠、低延迟的边缘智能,推动复杂场景下的泛化与自主决策能力。
222 3
面向边缘通用智能的多大语言模型系统:架构、信任与编排——论文阅读
|
2月前
|
数据采集 机器学习/深度学习 搜索推荐
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
MIT与丰田研究院研究发现,扩散模型的“局部性”并非源于网络架构的精巧设计,而是自然图像统计规律的产物。通过线性模型仅学习像素相关性,即可复现U-Net般的局部敏感模式,揭示数据本身蕴含生成“魔法”。
157 3
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
|
2月前
|
机器学习/深度学习 人工智能 资源调度
MicroNAS:面向MCU的零样本神经架构搜索——论文阅读
MicroNAS是一种专为微控制器单元(MCU)设计的零样本神经架构搜索(NAS)框架,无需训练即可通过理论驱动的性能指标评估网络架构。相比传统NAS方法,其搜索效率提升高达1104倍,同时兼顾精度与硬件效率,适用于边缘计算场景。该框架结合神经切线核(NTK)条件数、线性区域计数及硬件感知延迟模型,实现快速、高效的架构搜索,为资源受限设备上的AI部署提供了新思路。
197 2
MicroNAS:面向MCU的零样本神经架构搜索——论文阅读
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
编码器-解码器架构详解:Transformer如何在PyTorch中工作
本文深入解析Transformer架构,结合论文与PyTorch源码,详解编码器、解码器、位置编码及多头注意力机制的设计原理与实现细节,助你掌握大模型核心基础。建议点赞收藏,干货满满。
823 3
|
2月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
391 0
|
1月前
|
机器学习/深度学习 存储 缓存
115_LLM基础模型架构设计:从Transformer到稀疏注意力
大型语言模型(LLM)的架构设计是其性能的核心决定因素。从2017年Transformer架构的提出,到如今的稀疏注意力和混合专家模型,LLM架构经历了快速的演进。本文将全面探讨LLM基础架构的设计原理,深入分析Transformer的核心机制,详细介绍稀疏注意力、MoE等创新架构,并展望未来架构发展方向。通过数学推导和实践案例,为构建高效、强大的LLM提供全面指导。
|
1月前
|
机器学习/深度学习 自然语言处理 监控
23_Transformer架构详解:从原理到PyTorch实现
Transformer架构自2017年Google发表的论文《Attention Is All You Need》中提出以来,彻底改变了深度学习特别是自然语言处理领域的格局。在短短几年内,Transformer已成为几乎所有现代大型语言模型(LLM)的基础架构,包括BERT、GPT系列、T5等革命性模型。与传统的RNN和LSTM相比,Transformer通过自注意力机制实现了并行化训练,极大提高了模型的训练效率和性能。
|
1月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路