固定参数的模型有多大潜力?港中文、上海AI Lab等提出高效视频理解框架EVL

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 固定参数的模型有多大潜力?港中文、上海AI Lab等提出高效视频理解框架EVL

来自香港中文大学、上海人工智能实验室等机构的研究者提出了高效的视频理解迁移学习框架 EVL,通过固定骨干基础模型的权重,节省了训练计算量和内存消耗

视觉基础模型近两年取得了瞩目发展。从一方面而言,基于大规模互联网数据的预训练已经给模型预置了大量的语义概念,从而具有良好的泛化性能;但另一方面,为充分利用大规模数据集带来的模型尺寸增长,使得相关模型在迁移到下游任务时面临着低效率问题,尤其是对于需要处理多帧的视频理解模型。



论文链接:https://arxiv.org/abs/2208.03550

代码链接:https://github.com/OpenGVLab/efficient-video-recognition


基于上述两方面特点,来自香港中文大学、上海人工智能实验室等机构的研究者提出了高效的视频理解迁移学习框架 EVL,通过固定骨干基础模型的权重,节省了训练计算量和内存消耗;同时通过利用多层次、细粒度的中间特征,尽可能保持了传统端到端微调的灵活性。

下图 1 展示了 EVL 方法在视频理解数据集 Kinetics-400 上的结果。实验显示,本文方法在节省训练开销的同时,仍然充分发掘了视觉基础模型在视频理解任务中的潜力。


图 1:Kinetics-400 识别精度比较,横轴为推理计算量,纵轴为精度。


方法


算法的总体示意图如图 2(a)所示。对于一个视频样本,我们取其中的 T 帧输入一个图像识别网络(以 CLIP 为例)并提取特征。与传统方法相比,我们从图像识别网络的最后几层中提取多层、未池化的特征,从而获取更丰富、更细粒度的图像信息;并且图像识别网络的参数权重在视频学习中始终保持固定。随后,多层特征图依次输入一个 Transformer 解码器进行视频级信息聚合。经多层解码后的 [CLS] 特征将用于生成最终的分类预测。


如图 2(b)所示,由于 Transformer 解码器聚合特征时的无序性,我们在网络中添加了额外的时序信息建模模块,以更好地提取位置有关的细粒度时序信息。具体而言,我们添加 3 种额外的位置有关时序信息:第一是时间位置嵌入(Position Embeddings),第二是时间维度深度可分卷积(Depthwise Convolution),第三是相邻帧间的注意力信息。对于帧间注意力信息,我们从图像识别网络中提取对应层的 Query 和 Key 特征,并在相邻帧之间计算注意力图(不同于图像识别网络中,注意力图是由来自同一帧内的 Query 和 Key 特征得到)。所得的注意力图能显式地反映出相邻帧之间物体的位置变化。注意力图经过线性投影后得到反应物体位移特征的向量组,并以逐元素相加的形式融合入图像特征中。


图 2:EVL 算法结构图。(a)总体结构,(b)时序信息建模模块。


图 3:帧间注意力特征的数学表达。


实验


在图 1 和表 1 中,我们引用了之前视频理解中的部分重要方法。尽管着力于减小训练开销,我们的方法仍然能在精度方面领先于现有方法(相同计算量下)。


表 2 中我们展示了固定骨干网络带来的训练开销降低。内存方面,在 V100 16GB GPU 上,固定骨干网络可以使单卡 batch size 最高达到 64,而端到端训练则只能达到 8;时间方面,固定骨干网络可以节省 3 至 4 倍的训练时间。


表 3 中我们展示了细粒度特征图对识别性能的提升。多层的未经池化特征使得我们在固定骨干网络权值时仍然能保持相当程度的灵活性。使用未经池化的特征带来的提升最为显著(大约 3%),其次,使用多层解码器和中间层特征也能分别带来大约 1% 的性能提升。


最后我们在表 4 中展示了细粒度时序信息模块的效果。尽管细粒度时序信息对 Kinetics-400 的性能影响有限,但它们对于 Something-Something-v2 的性能十分重要:3 种细粒度时序信息模块在 Kinetics-400 和 Something-Something-v2 上分别合计带来大约 0.5% 和大约 14% 的性能提升。


表 1:Kinetics-400 上与现有方法的对比结果


表 2:固定骨干网络权重带来的训练开销降低


表 3:细粒度特征图对精度的影响


表 4:细粒度时序信息建模在不同数据集上的效果


总结


本文提出了 EVL 视频理解学习框架,首次展示了固定的图像骨干网络在视频理解问题上的巨大潜力,也使得高性能的视频理解对于计算资源有限的研究群体更加友好。我们也相信随着视觉基础模型在质量及规模上的提升,我们的方法能为后续的轻量级迁移学习算法研究提供参考。


相关文章
|
1月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
|
1月前
|
人工智能 API 数据安全/隐私保护
近期非常风靡非常逼真的AI视频内容由sora生成的视频是怎么回事?-优雅草卓伊凡
近期非常风靡非常逼真的AI视频内容由sora生成的视频是怎么回事?-优雅草卓伊凡
501 12
近期非常风靡非常逼真的AI视频内容由sora生成的视频是怎么回事?-优雅草卓伊凡
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1389 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
1月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
258 120
|
2月前
|
人工智能 数据可视化 数据处理
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
727 3
AI智能体框架怎么选?7个主流工具详细对比解析
|
1月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
192 6
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
AI:百度飞桨EasyDL多门视频课程,手把手教你如何定制高精度AI模型
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
398 30
|
1月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
453 27

热门文章

最新文章